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We are on the cusp to revolute the way to make machines

Operation
Concept of and
Operations il Et Maintenance
Va Idat

Project g RLEm
Definition chular:mcnts Ve 51;1 SN
Architecture and Validatio

Connecting

Integratio .
Detailed Test, and Project
Design Verification Test and
Integration

lmplzmzntation

V74 V24 “ ‘
V process Time i
Wlijkipedia Neural Network
[science, 2019]

Requirements

Reinforcement

Learning
[science, 2018]

Implementation Suftuars

Evolving

“Waterfall model”

Verification

Mamtenance

Closed Source \/ f pen Source

D 1 \,"‘- ‘ U_bUfw

Open

Code/data
[science, 2017]

s Rl L;:x symbo%rg
McAfee ~Z _ - | 1 ) @ o
@ . T Sharing
Wmﬂg\p\/é o A mm.. ». .
‘H : JVM%GO-Q “Big data has met its match”

Safe Al & Self-driving 1/31/2020 2




How to design safe Al-empowered
robots?

- Mission of Safe Al Lab @ CMU



AV seems to be
a perfect field
to study this!




Waymo Self-Driving Crash in Arizona
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Two
fundamental

challenges for
Al safety
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€10 develop verifiable, explainable, reliable,
affordable, and good-for-all Al in the face of the
uncertain, dynamic, and possibly human-involved
environment by bridging statistics and cybernetics.

- Mission of Safe Al Lab @ CMU



11 billion miles

To prove an AV is safer than human drivers

Rare event analysis

[Nidhi Kalra, Susan M. Paddock, “How Many Miles of Driving Would It Take to Demonstrate Autonomous Vehicle Reliability? RAND report 2016]



Unsupervised learning + Rare-event learning
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Naturalistic Environment vs Accelerated Environment

Naturalistic Environment Accelerated Environment
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Accelerated Evaluation

Ongoing projects:

“Development of provable autonomous vehicle
evaluation approaches with efficient data
collection, unsupervised analysis, and high-
dimensional stochastic models of on-road driving
environment” (Uber, PI)

“Development of efficient multi-model
annotation and checking tools based on
synthesized learning methods” (Bosch, PI)

“Development of a “primary other test vehicle”
for the testing and evaluation of high-level
automated vehicles” (Toyota, Co-Pl)
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AV Testing

NAVYA Pilot Potential Routes ORAFT ety iy
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https://github.com/carla-simulator/carla
https://www.theverge.com/2018/10/30/18044670/waymo-fully-driverless-car-permit-california-dmv
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Media Coverage
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AR/VR interact
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Education

 Self-Driving and Al Robotics
* 2020 Spring

* (Supported by Struminger Teaching Award, MechE,
Ebley Center)



800 Hours

Needed to analyze 1 hour video data

Unsupervised learning



The Autonomous Vehicle Datasets

-f."\ = BERKELEY . \
e DeepDrive = aollo
The KITTI Vision

m\ CITYSCAPES
" | DATASET

Benchmark Suite

UDACITY
Name Size Information (Benchmark) Format
KITTI [1] >180GB Vision, Lidar, GPS, IMU txt, png
Berkeley Deep Drive [2] >1100 Hour Vision video, image
Oxford Robotcar[3] >1000KM Vision, Lidar, GPS, IMU, VO Bin, csv, png
Apollo[4] >156GB (Raw data) Vision, GPS,IMU, Dynamic Rosbag
Udacity[5] >8 Hour, 286 GB Vision, Lidar, GPS,Dynamic Rosbag




Extensions to Other Scenarios

Car-following Lane change

Pedestrian crossing Passing cyclists

B. Chen, D. Zhao, H. Peng, D. LeBlanc, B. Chen, D. Zhao, H. Peng, Y. Guo, Z. Mo, D. Zhao,

"Analysis and Modeling of Unprotected "Evaluation of Automated Vehicles “Approaching and Passing Cyclists
Intersection Left-Turn Conflicts based on Encountering Pedestrians at - A learning Based Approach”,
Naturalistic Driving Data, " IEEE Unsignalized Crossings," IEEE under preparation.

Intelligent Vehicle Symposium, 2017 Intelligent Vehicle Symposium, 2017.
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TrafficNet.org: An Open Naturalistic Driving Scenario
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Framework of TrafficNet

[Zhao, Guo, Jia, TrafficNet: An Open Naturalistic Driving Scenario Library ITSC, 2017]




Extracting Traffic Primitives using Unsupervised

Toyota (PI) “Extracting Traffic Primitives
from Millions of Naturalistic Driving

Encounters -- A Synthesized Method
based on Nonparametric Bayesian and
Deep Unsupervised Learning”

Previous methods:
- Subjectively-selected scenarios

Traffic Primitive:

« Segment/cluster similar traffic scenes
automatically using unsupervised
learning

- Objectively-selected scenarios

Traffic primitive is referred to the representation
of fundamental building blocks of the traffic
environment in spatiotemporal space.

D Egocar

(39  Target car

( ' ' Target #2

C2 = [Ad,. Av,Ad,]T

il I l. Target #1
- T={Ad,. Av.Ad,]T

(AP e

C3 = [Ad,. Av.Ad,)

Time t[s|

[Wang, Zhao, 'Extracting Traffic Primitives Directly from Naturalistically Logged Data for Self-Driving Applications, ICRA, 2018]

Towards Safe Al
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Driving encounters collection

oNaturalistic driving encounters

1600~2800 vehicles
5+ years & -
1 million encounters 'J’ & A

QESSE

Towards Safe Al 1/31/2020 22



Primitive Extraction & Analysis

(i) primitive sets [‘_ . A

(if) driving
primitives

(iii) driving
scenario
templates

(iv) driving
scenario
exemplars

(v) raw driving
data

\,f—*\T

)

Lane change

/TN
Sy

lcascade

Left turn

Jrﬂ TTT[ JH

Hierarchical DP

Extracting driving primitives

Nonparametric Bayesian learning

[Wang, Zhang, Zhao, ‘Understanding V2V Driving Scenarios through Traffic Primitives’, under review, 2018]
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Nonparametric Bayesian Learning

Primitives

......
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Feature representations

[Wang, Zhang, Zhao, ‘Understanding V2V Driving Scenarios through Traffic Primitives’, under review, 2018.]
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Unified Autonomous Vehicle Data Integration

Traditional Autonomous Vehicle Unified Autonomous Vehicle Data
Data Storing Method Integration

[ [ —

Lidar . . . Lidar

B |
= .

M\

\/ . . \/ >
Steering Binary Lgrge OBject Steeringpitterent kinds of data are integrated
I (BLOB) like data packages " " into arelational database respectively
. Primitive 1 _E

E Primitive 2
The whole data package need to be Primitive 3 The data can be accessed conveniently

traversed to investigate specific data according to primitives/scenarios

[Zhu, Wang, Zhao, Integrating Heterogeneous Driving data For Autonomous Vehicles, ITSC, 2018]
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Use “Traffic Primitives” to define driving scenarios

Analysis

Big data

Design
[Zhu, ITSC, 2018]

[Liu, TITS, 2019]

Ongoing projects:

“A scenario-based database for connected and Decision-making

autonomous driving in A smart city” (Traffic21, Pl)

Robust

Hyper-parameters
[Wang, NeurlPS, 2019]

“Labeling roads with different types of functional
automated driving requirements using machine
learning” (Mobility21, PI)

Explainable
DTW
[Wang, TITS, 2019]

“Extracting traffic primitives from millions of
naturalistic driving encounters -- A synthesized
method based on nonparametric Bayesian and
deep unsupervised learning” (Toyota, Pl)

Granularity
Bayesian
nonparametric
[Wang, ICRA,2017]

Empirical
Human factors
[Zhao, AVEC, 2014]

“A unified, auto-checking, and self-analyzing data
platform for intelligent driving applications”
(Denso, PI)

"Mobility21

A USDOT NATIONAL
UNIVERSITY TRANSPORTATION CENTER

TOYOTA

RESEARCH INSTITUTE INTERNATIONAL=

Regulation/policies
[Chen, TITS, 2019]

-~ Versatile

DPGP
[Guo, ITSC, 2019]

Generative
VAE-GAN
[Ding, ICRA 2019]

Clustering
Deep
unsupervised
learning

[Wang, TIV, 2019]

Stochastic
GGMM-HMM
[Wang, TIV, 2017]
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€10 develop verifiable, explainable, reliable,
affordable, and good-for-all Al in the face of the
uncertain, dynamic, and possibly human-involved
environment by bridging statistics and cybernetics.

- Mission of Safe Al Lab @ CMU
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