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Motivation

”All models are wrong, but some are useful.”– George Box, statistician
Uncertainty and error in modeling are inevitable in practice. We may not fully understand the
dynamics of the system or the parameters of the system are changing over time. Examples:

The vehicle dynamics are difficult to model 100% accurately due to complexity.

As an airplane flies, its mass is decreasing due to fuel consumption.

How to maintain consistent performance of a system in the presence of model uncertainty or
unknown parameter variation?

Use adaptive control!
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A Brief History

With the emergence of servosystems and flight controllers in 1950s, adaptive control
became an important discipline in control and dynamics. The initial motivation can be
traced to the design of autopilots for high-performance aircraft.

The last several decades have witnessed the development on both the theoretical side and
the application side. Early advances in system identification and dynamic programming
have constructed the foundations for adaptive and learning control.

Industrial applications include chemical reactor control, engine control, ship/aircraft
autopilot, power plant control, ...
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Classification of Adaptive Control Methods

1 Model-based Adaptive Control

Fully Model-based, e.g., Model Reference Adaptive Control (MRAC).
Very mature in terms of theoretical guarantees. However restricted to some know types of
models due to the model-based formulations.
Learning-based, e.g., model-based reinforcement learning controller.
Partially model-based. Unmodeled part is handled by some data-driven optimization and
learning algorithms, therefore gain flexibility.

2 Data-Driven Adaptive Control

e.g., Model-free reinforcement learning controller.
Work without any prior knowledge about the model. Great flexibility. However requiring
extensive measurements and collecting data. In addition, it lacks stability and performance
guarantees.

Ding Zhao (CMU) M2-4: Adaptive Control 6 / 30



Table of Contents

1 Motivation and Overview of Adaptive Control

2 Model-Reference Adaptive Control (MRAC) - SISO

3 Model-Reference Adaptive Control (MRAC) - MIMO

Ding Zhao (CMU) M2-4: Adaptive Control 7 / 30



Model-Reference Adaptive Control (MRAC)

MRAC is one of the fully model-based adaptive controllers. Model-based adaptive
controller can be viewed as a dynamic system with online parameter estimation.

Indirect Adaptive Control: compute controller parameters by estimating plant parameters,
therefore relies on convergence of the estimated parameters to their true values.

Direct Adaptive Control: estimate the controller parameters directly without estimating
plant parameters.

We will focus on Direct MRAC design and analysis.

Courtesy: Lavretsky, E.
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Example: MRAC for a 1st Order Linear System

Unknown dynamics: ẋ = ax+ bu, x(0) = 0. The true model parameter a = 1, b = 3
are unknown to the adaptive controller

Reference (desired) model: ẋm = −4xm + 4r(t), xm(0) = 0

The adaptive controller: u = k̂xx+ k̂rr

The adaptive law (based on Lyapunov theory)

e = x− xm
˙̂
kx = −2xe, k̂x(0) = 0
˙̂
kr = −2re, k̂r(0) = 0

Two different reference signals:

r(t) = 4
r(t) = 4 sin(3t)
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Example: MRAC for a 1st Order Linear System (continued)

No Persistency of Excitation: r(t) = 4
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Example: MRAC for a 1st Order Linear System (continued)

Persistency of Excitation: r(t) = 4 sin(3t)
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MRAC for 1st Order Systems

1st Order Systems: ẋ = ax+ b(u+ f(x)), where a,b are constant unknown parameters.
We assumed that sign of b is known. The unknown nonlinear function f(x) is linearly
parameterized by N unknown constant parameters θi and known basis functions ϕi, i.e.,

f(x) =

N∑
i=1

θiϕi(x) = θTΦ(x)

where θ =
(
θ1 . . . θN

)T
and Φ(x) = (ϕ1(x) . . . ϕN (x))T

A reference model is described by the 1st order differential equation:

ẋm = amxm + bmr(t) (1)

where am < 0 and bm are the known desired constants and r(t) is the reference input.

Control goal: Design a controller u(t) such that all signals in the system remain bounded,
and the tracking error e(t) = x(t)− xm(t)→ 0 as t→∞.
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MRAC for 1st Order Systems (cont’d)

An ideal control solution formed using feedback and feedforward architecture. If we knew
the unknown parameters, we could directly design the controller as

uideal = kxx+ krr(t)− θTΦ(x) (2)

Substitute (2) into the system equation, the closed-loop dynamics becomes:

ẋ = (a+ bkx)x+ bkrr(t) (3)

Compare (3) with the reference model (1), the ideal gains kx and kr must satisfy the
following matching conditions:

a+ bkx = am

bkr = bm
(4)

Obviously ideal gains kx and kr always exist by solving (4). However, in reality, a, b, θ are
unknown.
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MRAC for 1st Order Systems (cont’d)

We form a control solution similar to (2):

u = k̂xx+ k̂rr(t)− θ̂TΦ(x) (5)

We need to find the feedback gain k̂x, the feedforward gain k̂r, and the estimated vector
of parameters θ̂ to achieve desired tracking of the reference model.

Substitute (5) into the system equation:

ẋ =
(
a+ bk̂x

)
x+ b

(
k̂rr(t)− (θ̂ − θ)TΦ(x)

)
(6)

Substitute (4) into (6):

ẋ = amx+ bkr︸︷︷︸
bm

r(t) + b
(
k̂x − kx

)
︸ ︷︷ ︸

∆kx

x+ b
(
k̂r − kr

)
︸ ︷︷ ︸

∆kr

r(t)− b
(
θ̂ − θ

)T
︸ ︷︷ ︸

∆θT

Φ(x) (7)
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MRAC for 1st Order Systems (cont’d)

The closed-loop dynamics of the tracking error e(t) = x(t)− xm(t) can be obtained by
subtracting (1) from (7):

ė = ẋ− ẋm = ame+ b
(
∆kxx+ ∆krr −∆θTΦ(x)

)
Because am < 0, xm(t) is a bounded function of r(t). Denote xm(t) = xm(r)

ė = ame+ b
(
∆kx(e+ xm(r)) + ∆krr −∆θTΦ(x)

)
(8)

Consider the Lyapunov function candidate:

V (e,∆kx,∆kr,∆θ) = e2 + |b|
(
γ−1
x ∆k2

x + γ−1
r ∆k2

r + ∆θTΓ−1
θ ∆θ

)
where γx > 0, γr > 0, and Γθ = ΓTθ > 0 are rates of adaptation.
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MRAC for 1st Order Systems (cont’d)

Take time derivative of V , along the trajectories of (8):

V̇ (e,∆kx,∆kr,∆θ) = 2eė+ 2|b|
(
γ−1
x ∆kx

˙̂
kx + γ−1

r ∆kr
˙̂
kr + ∆θTΓ−1

θ
˙̂
θ
)

= 2e
(
ame+ b

(
∆kxx+ ∆krr −∆θTΦ(x)

))
+ 2|b|

(
γ−1
x ∆kx

˙̂
kx + γ−1

r ∆kr
˙̂
kr + ∆θTΓ−1

θ
˙̂
θ
)

= 2ame
2 + 2|b|

(
∆kx

(
xe sign(b) + γ−1

x
˙̂
kx

))
+ 2|b|

(
∆kr

(
re sign(b) + γ−1

r
˙̂
kr

))
+ 2|b|∆θT

(
−Φ(x)e sign(b) + Γ−1

θ
˙̂
θ
)

If we choose the adaptive laws:
˙̂
kx = −γxxe sign(b)

˙̂
kr = −γrre sign(b)

˙̂
θ = ΓθΦ(x)e sign(b)

The time derivative of V becomes V̇ (e,∆kx,∆kr,∆θ) = 2ame(t)
2 ≤ 0
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Summary of What We Have So Far

We want
ẋ = ax+ b(u+ θTΦ(x))

behaves like
ẋm = amxm + bmr(t)

but do not know a, b, θ except the sign of
b. Propose control law

u = k̂xx+ k̂rr(t)− θ̂TΦ(x)

˙̂
kx = −γxxe sign(b)

˙̂
kr = −γrre sign(b)

˙̂
θ = ΓθΦ(x)e sign(b)

Tracking error dynamics e = x− xm:

ė = ame+ b
(
∆kx(e+ xm(r)) + ∆krr −∆θTΦ(x)

)
Lyapunov function
V (e,∆kx,∆kr,∆θ) =
e2 + |b|

(
γ−1
x ∆k2

x + γ−1
r ∆k2

r + ∆θTΓ−1
θ ∆θ

)
> 0

V̇ (e,∆kx,∆kr,∆θ) = 2ame(t)
2 ≤ 0

Now, we show that e,∆kx,∆kr,∆θ are bounded,
but we do not know whether they will converge to
0, because the system has an input r(t)
(non-autonomous).
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Barbalat’s lemma

Lyapunov direct method

The origin of ẋ = f(x) is stable if
∃V (x, t)

1 V (x) = 0 when x = 0

2 V (x) > 0 when x 6= 0

3 V̇ (x) ≤ 0

Note: Lyapunov only applies to
autonomous systems (no input).

Barbalat’s lemma

Given ẋ = f(x, u) if ∃V (x, t)

1 V (x, t) = 0 when x = 0

2 V (x, t) > 0, ∀x 6= 0

3 V̇ (x, t) ≤ 0, ∀x
4 lim

t→∞
V̈ (x, t) bounded

Then lim
t→∞

V̇ (x, t) = 0

Note 1: Basically, Barbalat’s lemma shows that if both
V (x) and V̈ (x, t) are bounded, then lim

t→∞
V̇ (x, t) = 0.

Note 2: V (x, t), V̇ (x, t), V̈ (x, t) have t because it may
have r(t) in the expression, which makes the system
time-varying.
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Convergence of MRAC

V ≥ 0 and V̇ ≤ 0 ⇒ e, ∆kx, ∆kr, ∆θ are bounded.

r(t) is bounded ⇒ ẋm(t) and xm(t) are bounded.

x(t) = xm(t) + e(t) ⇒ x(t) is bounded.

Consequently, u(t) is bounded and ẋ(t) is bounded as well.

Therefore ė(t) is bounded. V̈ (e,∆kx,∆kr,∆θ) = 4ame(t)ė(t) is bounded. By Barbalat’s
Lemma,

lim
t→∞

V̇ (x, t) = 2ame(t)
2 = 0

We can conclude
lim
t→∞

e(t) = 0

Note: we cannot prove ∆kx,∆kr,∆θ → 0. Actually, whether they could coverage or not
depends on r(t)!
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Parameter Convergence

The estimated parameters do not always converge to their true (or ideal) values. It
depends on the reference signal r(t).

A sufficient condition for parameter convergence is that reference signal r(t) satisfies
Persistency of Excitation (PE). However, PE is difficult to verify.

Direct MRAC provides good tracking even if the parameters do not converge to their true
(or ideal) values.
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Example: MRAC for a 1st Order Linear System

Unknown dynamics: ẋ = ax+ bu, x(0) = 0. The true model parameter a = 1, b = 3
are unknown to the adaptive controller

Reference (desired) model: ẋm = −4xm + 4r(t), xm(0) = 0

The adaptive controller: u = k̂xx+ k̂rr

The adaptive law (based on Lyapunov theory)
˙̂
kx = −2xe, k̂x(0) = 0
˙̂
kr = −2re, k̂r(0) = 0

Two different reference signals:

No Persistency of Excitation: r(t) = 4
Persistency of Excitation: r(t) = 4 sin(3t)
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Example: MRAC for a 1st Order Linear System (continued)

No Persistency of Excitation: r(t) = 4
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Example: MRAC for a 1st Order Linear System (continued)

Persistency of Excitation: r(t) = 4 sin(3t)
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Direct MRAC Design for Nonlinear MIMO System

Consider a special MIMO nonlinear system: ẋ = Ax+BΛ(u+ f(x)), where x ∈ Rn,
u ∈ RM . B ∈ Rn×M is known. A ∈ Rn×n and Λ ∈ RM×M are unknown matrices. It is
assumed that Λ is diagonal with positive elements λi, and the pair (A,BΛ) is controllable.

f(x) : Rn → RM can be written as a linear combination of N known basis functions,
with unknown constant matrix Θ ∈ RN×M . Φ(x) ∈ RN is the basis function vector.

f(x) = ΘTΦ(x)

A reference model described by ẋm = Amxm +Bmr(t). The control goal again is to let
the state x track xm

The ideal control law is uideal = KT
x x+KT

r r −ΘTΦ(x), as if the unknown matrices were
known. The closed loop system is ẋ =

(
A+BΛKT

x

)
x+BΛKT

r r. The matching
conditions are A+BΛKT

x = Am and BΛKT
r = Bm

Note: Kx and Kr may not exist to satisfy the matching conditions. In practice, Am and
Bm are chosen such that there exists a solution for Kx and Kr.
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Direct MRAC Design for Nonlinear MIMO System (cont’d)

Consider the control law: u = K̂T
x x+ K̂T

r r − Θ̂TΦ(x)

Similar to the linear case, we have error dynamics:

ė = Ame+BΛ
[
∆KT

x x+ ∆KT
r r −∆ΘTΦ(x)

]
where ∆Kx = K̂x −Kx,∆Kr = K̂r −Kr, and ∆Θ = Θ̂−Θ.

Consider the Lynapunov function candidate:

V (e,∆Kx,∆Kr,∆Θ) = eTPe+tr
([

∆KT
x Γ−1

x ∆Kx + ∆KT
r Γ−1

r ∆Kr + ∆ΘTΓ−1
Θ ∆Θ

]
Λ
)

where P = P T > 0 satisfies the algebraic Lyapunov equation PAm +ATmP = −Q for
some chosen Q = QT > 0. Γx = ΓTx > 0, Γr = ΓTr > 0, ΓΘ = ΓTΘ > 0 are the rates of
adaptation.

Ding Zhao (CMU) M2-4: Adaptive Control 26 / 30



Direct MRAC Design for Nonlinear MIMO System (cont’d)

V̇ = ėTPe+ eTP ė+ 2 tr
([

∆KT
x Γ−1

x
˙̂
Kx + ∆KT

r Γ−1
r

˙̂
Kr + ∆ΘTΓ−1

Θ
˙̂
Θ
]

Λ
)

=
(
Ame+BΛ

(
∆KT

x x+ ∆KT
r r −∆ΘTΦ(x)

))T
Pe

+ eTP
(
Ame+BΛ

(
∆KT

x x+ ∆KT
r r −∆ΘTΦ(x)

))
+ 2 tr

([
∆KT

x Γ−1
x

˙̂
Kx + ∆KT

r Γ−1
r

˙̂
Kr + ∆ΘTΓ−1

Θ
˙̂
Θ
]

Λ
)

= eT
(
ATmP + PAm

)
e+ 2eTPBΛ

(
∆KT

x x+ ∆KT
r r −∆ΘTΦ(x)

)
+ 2 tr

([
∆KT

x Γ−1
x

˙̂
Kx + ∆KT

r Γ−1
r

˙̂
Kr + ∆ΘTΓ−1

Θ
˙̂
Θ
]

Λ
)

Since PAm +ATmP = −Q,

V̇ = −eTQe+
[
2eTPBΛ∆KT

x x+ 2 tr
(

∆KT
x Γ−1

x
˙̂
KxΛ

)]
+
[
2eTPBΛ∆KT

r r + 2 tr
(

∆KT
r Γ−1

r
˙̂
KrΛ

)]
+
[
−2eTPBΛ∆ΘTΦ(x) + 2 tr

(
∆ΘTΓ−1

Θ
˙̂
ΘΛ
)]

Ding Zhao (CMU) M2-4: Adaptive Control 27 / 30



Direct MRAC Design for Nonlinear MIMO System (cont’d)

Since tr
(
baT

)
= aTb,

eTPBΛ︸ ︷︷ ︸
aT

∆KT
x x︸ ︷︷ ︸
b

= tr(∆KT
x x︸ ︷︷ ︸
b

eTPBΛ︸ ︷︷ ︸
aT

)

eTPBΛ︸ ︷︷ ︸
aT

∆KT
r r︸ ︷︷ ︸
b

= tr(∆KT
r r︸ ︷︷ ︸
b

eTPBΛ︸ ︷︷ ︸
aT

)

eTPBΛ︸ ︷︷ ︸
aT

∆ΘTΦ(x)︸ ︷︷ ︸
b

= tr(∆ΘTΦ(x)︸ ︷︷ ︸
b

eTPBΛ︸ ︷︷ ︸
aT

)

(9)

Substitute (9) into V̇

V̇ = −eTQe+ 2 tr
(

∆KT
x

[
Γ−1
x

˙̂
Kx + xeTPB

]
Λ
)

+ 2 tr
(

∆KT
r

[
Γ−1
r

˙̂
Kr + reTPB

]
Λ
)

+ 2 tr
(

∆ΘT
[
Γ−1
	

˙̂
Θ− Φ(x)eTPB

]
Λ
)
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Direct MRAC Design for Nonlinear MIMO System (cont’d)

Therefore, the adaptive laws are chosen to be

˙̂
Kx = −Γxxe

TPB

˙̂
Kr = −Γrr(t)e

TPB

˙̂
Θ = ΓΘΦ(x)eTPB

The time-derivative of V becomes negative semi-definite:

V̇ = −eTQe ≤ 0

The rest of analysis is similar to the SISO case with Barbalat’s lemma.
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