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Plan for Today

Prediction - Correction Observer (Luenberger Observer)

Prediction - Updated-Correction Observer

Kalman Filter

All observers have the same goal:

y(k), u(k), x̂(k − 1)⇒ x̂(k)

Ding Zhao (CMU) M2-3: Stochastic Control 4 / 41



Recap: Continuous Time Luenberger Observer

By using an observer and performing state feedback on x̂, we can build an output feedback
controller.

u = Kx̂

⇒ ẋ = Ax+BKx̂

˙̄x = Ax̂+Bu / prediction

˙̂x = ˙̄x+ L(y − ŷ) / correction

y = Cx+Du

ŷ = Cx̂+Du

⇒ ˙̂x = Ax̂+BKx̂+ L(Cx+Du− (Cx̂+Du))

= (A− LC +BK)x̂+ LCx

Now stack

[
ẋ
˙̂x

]
=

[
A BK
LC A− LC +BK

] [
x
x̂

]
⇒
[
ẋ
ė

]
=

[
A+BK −BK

0 A− LC

] [
x
e

]
Note D does not show up in the final results. Some analysis actually takes D as 0. It
makes sense because we can also take ỹ = y −Du = Cx.
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Recap: Discrete Luenberger Observer (in Pole Placement Notation)

Controller System

⇒ x̂(k − 1) ← y(k − 1)
u(k) = Kx̂(k − 1) → u(k)
x̄ (k) = Ax̂ (k − 1) +Bu (k) x (k) = Ax (k − 1) +Bu (k)
ŷ (k − 1) = Cx̂ (k − 1)
x̂ (k) = x̄ (k) + L (y (k − 1)− ŷ (k − 1))

wait until ∆T

⇒ x̂(k) ← y(k) = Cx(k)
Memorize x̂ (k)
Output u (k + 1) = Kx̂ (k) → u(k + 1)

wait until ∆T

Note we do not use x̂(k) until next time interval.
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A Similar Expression

Controller System

⇒ x̂(k − 1) ← y(k − 1)
u(k) = Kx̂(k − 1) → u(k)

x (k) = Ax (k − 1) +Bu (k)

wait until ∆T

⇒ x̂(k − 1) ← y(k) = Cx(k)
x̄ (k) = Ax̂ (k − 1) +Bu (k) / We could compute the red part
ŷ (k − 1) = Cx̂ (k − 1) in the next time interval
x̂ (k) = x̄ (k) + L (y (k − 1)− ŷ (k − 1))
Memorize x̂ (k)
Output u (k + 1) = Kx̂ (k) → u(k + 1)

wait until ∆T
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Prediction Updated-Correction (in Pole Placement Notation)

Controller System

⇒ x̂(k − 1) ← y(k − 1)
u(k) = Kx̂(k − 1) → u(k)

x (k) = Ax (k − 1) +Bu (k)

wait until ∆T

⇒ x̂(k − 1) ← y(k) = Cx(k)
x̄ (k) = Ax̂ (k − 1) +Bu (k)
ŷ (k) = Cx̄ (k)
x̂ (k) = x̄ (k) + L (y (k)− ŷ (k)) / Since y(k) has been available, use it instead.
Memorize x̂ (k)
Output u (k + 1) = Kx̂ (k) → u(k + 1)

wait until ∆T
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Prediction Updated-Correction (in Kalman Filter Notation)

Controller System

⇒ x̂k−1|k−1 ← yk−1
uk = Kx̂k−1|k−1 → uk

xk = Axk−1 + Buk
wait until ∆T

⇒ x̂k−1|k−1 ← yk = Cxk
x̂k|k−1 = Ax̂k−1|k−1 + Buk
ŷk|k−1 = Cx̂k|k−1
x̂k|k = x̂k|k−1 + Lk(yk − ŷk|k−1)

Memorize x̂k|k
Output uk+1 = Kx̂k|k → uk+1

wait until ∆T
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Prediction Updated-Correction (Consider Gaussian Noise)

Controller System

⇒ x̂k−1|k−1 ← yk−1
uk = Kx̂k−1|k−1 → uk

xk = Axk−1 + Buk + wk

wait until ∆T

⇒ x̂k−1|k−1 ← yk = Cxk + vk
x̂k|k−1 = Ax̂k−1|k−1 + Buk
ŷk|k−1 = Cx̂k|k−1
x̂k|k = x̂k|k−1 + Lk(yk − ŷk|k−1)

Memorize x̂k|k
Output uk+1 = Kx̂k|k → uk+1

wait until ∆T

wk is the process noise, vk is the observation noise. wk ∼ N (0,W), vk ∼ N (0,V).
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Prediction Updated-Correction (with Kalman Optimal Gain)

Controller System

⇒ x̂k−1|k−1 ← yk−1
uk = Kx̂k−1|k−1 → uk

xk = Axk−1 + Buk + wk

wait until ∆T

⇒ x̂k−1|k−1,Pk−1|k−1 ← yk = Cxk + vk
x̂k|k−1 = Ax̂k−1|k−1 + Buk
ŷk|k−1 = Cx̂k|k−1
Pk|k−1 = APk−1|k−1A

T + W

Lk = Pk|k−1C
T(CPk|k−1C

T + V)−1

x̂k|k = x̂k|k−1 + Lk(yk − ŷk|k−1)

Pk|k = (I− LkC)Pk|k−1
Memorize x̂k|k,Pk|k
Output uk+1 = Kx̂k|k → uk+1

wait until ∆T
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The Five Kalman Filter Equations

Controller System

⇒ x̂k−1|k−1 ← yk−1
uk = Kx̂k−1|k−1 → uk

xk = Axk−1 + Buk + wk

wait until ∆T

⇒ x̂k−1|k−1,Pk−1|k−1 ← yk = Cxk + vk
P-1: x̂k|k−1 = Ax̂k−1|k−1 + Buk
ŷk|k−1 = Cx̂k|k−1
P-2: Pk|k−1 = APk−1|k−1A

T + W

C-1: Lk = Pk|k−1C
T(CPk|k−1C

T + V)−1

C-2: x̂k|k = x̂k|k−1 + Lk(yk − ŷk|k−1)

C-3: Pk|k = (I− LkC)Pk|k−1
Memorize x̂k|k,Pk|k
Output uk+1 = Kx̂k|k → uk+1

wait until ∆T
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The Five Kalman Filter Equations II

Controller System

⇒ x̂k−1|k−1 ← yk−1
uk = Kx̂k−1|k−1 → uk

xk = Axk−1 + Buk + wk

wait until ∆T

⇒ x̂k−1|k−1,Pk−1|k−1 ← yk = Cxk + vk
P-1: x̂k|k−1 = Ax̂k−1|k−1 + Buk
P-2: Pk|k−1 = APk−1|k−1A

T + W

C-1: Lk = Pk|k−1C
T(CPk|k−1C

T + V)−1

C-2: x̂k|k = x̂k|k−1 + Lk(yk −Cx̂k|k−1)

C-3: Pk|k = (I− LkC)Pk|k−1
Memorize x̂k|k,Pk|k
Output uk+1 = Kx̂k|k → uk+1

wait until ∆T
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How to Compute the Kalman Gain Lk

min
Lk

E
[∥∥xk − x̂k|k

∥∥2]
x̂k|k = x̂k|k−1 + Lk(yk − ŷk|k−1)

s.t. x̂k|k−1 = Ax̂k−1|k−1 + Buk

ŷk|k−1 = Cx̂k|k−1

The system dynamics:

xk = Axk−1 + Buk + wk

yk = Cxk + vk

wk is the process noise, vk is the observation
noise. wk ∼ N (0,W), vk ∼ N (0,V).

Kalman Filter:
P-1: x̂k|k−1 = Ax̂k−1|k−1 + Buk
P-2: Pk|k−1 = APk−1|k−1A

T + W

C-1: Lk = Pk|k−1C
T(CPk|k−1C

T + V)−1

C-2: x̂k|k = x̂k|k−1 + Lk(yk −Cx̂k|k−1)
C-3: Pk|k = (I− LkC)Pk|k−1

Where do these three equations come from?
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The Key Ideas of Kalman Filter

What are Pk|k and Pk|k−1

xk = Axk−1 + Buk + wk

x̂k|k−1 = Ax̂k−1|k−1 + Buk

x̂k|k = x̂k|k−1 + Lk(yk −Cx̂k|k−1)

Pk|k−1 = cov(xk − x̂k|k−1)

Pk|k = cov(xk − x̂k|k)

They are Covariance Matrices
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Covariance Matrix

Let random vector x =
[
x1 . . . xn

]T
. The covariance matrix of x is defined as

cov(x) = E[(x− x̄)(x− x̄)T ] = E(xxT)− x̄x̄T

=



E[(x1 − x̄1)(x1 − x̄1)] E[(x1 − x̄1)(x2 − x̄2)] · · · E[(x1 − x̄1)(xn − x̄n)]

E[(x2 − x̄2)(x1 − x̄1)] E[(x2 − x̄2)(x2 − x̄2)] · · · E[(x2 − x̄2)(xn − x̄n)]

...
...

. . .
...

E[(xn − x̄n)(x1 − x̄1)] E[(xn − x̄n)(x2 − x̄2)] · · · E[(xn − x̄n)(xn − x̄n)]


cov(Ax + a) = A cov(x) AT, where A and a are constant.
cov(x + y) = cov(x) + cov(x,y) + cov(y,x) + cov(y), where cov(x,y) is the
cross-covariance matrix of x and y. If x and y are independent, cov(x,y) = cov(y,x) = 0
⇒ cov(x + y) = cov(x) + cov(y)
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The Key Ideas of Kalman Filter

What are Pk|k and Pk|k−1

x̂k|k = x̂k|k−1 + Lk(yk −Cx̂k|k−1)

Pk|k−1 = cov(xk − x̂k|k−1)

Pk|k = cov(xk − x̂k|k)

Why do we need them? The goal is to min
Lk

E
[∥∥xk − x̂k|k

∥∥2]. We should have

∂ E
[∥∥xk − x̂k|k

∥∥2]
∂ Lk

= 0 and solve for Lk as L∗k, but it is hard to work on it directly.
Instead people find out

E
[∥∥xk − x̂k|k

∥∥2] = tr(Pk|k)

Now we only need to solve
∂ tr(Pk|k)

∂ Lk
= 0 and it turns out to be a very clear way to avoid

both expectation and complex matrix derivative.
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Trace and Determinant

Trace Determinant
tr(A) =

∑n
i=1 aii det(A) =

∑
pi∈Pn σ(pi)

∏n
j=1 ajpi(j)

tr(A) =
∑

i λi det(A) =
∏
i λi

tr(AT ) = tr (A)

tr(αA) = α · tr(A)

tr(A+B) = tr(A) + tr(B)

tr(AB) 6= tr(A) tr(B)

tr(AB) = tr(BA)

tr
(
M−1AM

)
= tr(A)

det(AT ) = det(A)

det(αA) = αn det(A)

det(A+B) 6= det(A) + det(B)

det(AB) = det(A) det(B)

det(AB) = det(BA)

det
(
M−1AM

)
= det(A)

∂ tr(AX)

∂X
=
∂ tr(XA)

∂X
= A>,

∂ tr
(
AX>

)
∂X

=
∂ tr

(
X>A

)
∂X

= A

∂ tr
(
X>SX

)
∂X

=2SX,
∂ tr

(
XSX>

)
∂X

=2XS, where S is symmetric.
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Expectation, Covariance Matrix, and Trace

E
[∥∥xk − x̂k|k

∥∥2] = tr(Pk|k)

where Pk|k = cov(xk − x̂k|k)
Prove: Let e = xk − x̂k|k and E[e] = ē = 0

tr(Pk|k) = tr(cov(e)) =
∑
i

E[(ei − ēi)2] =
∑
i

E[e2i − ē2i ] / this step is always true

=
∑
i

E[e2i ]−
∑
i

ē2i =
∑
i

E[e2i ]− ē =
∑
i

E[e2i ] / ēi is a constant

= E

[∑
i

e2i

]
= E[‖e‖2] = E

[∥∥xk − x̂k|k
∥∥2]
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Express Pk|k with Lk

If we want to compute
∂ E
[∥∥xk − x̂k|k

∥∥2]
∂ Lk

=
∂ tr(Pk|k)

∂ Lk
= 0, first need to express Pk|k with Lk.

Recall Pk|k = cov(xk − x̂k|k) and Pk|k−1 = cov(xk − x̂k|k−1)

Pk|k = cov
(
xk − x̂k|k

)
= cov

(
xk −

[
x̂k|k−1 + Lk

(
yk −Cx̂k|k−1

)])
= cov

(
xk −

[
x̂k|k−1 + Lk

(
Cxk + vk −Cx̂k|k−1

)])
= cov

[(
I− LkC)(xk − x̂k|k−1

)
− Lkvk

]
Since the measurement error vk is uncorrelated with the other terms, this becomes
Pk|k = cov

[
(I− LkC)

(
xk − x̂k|k−1

)]
+ cov [Lkvk]

By the properties of vector covariance this becomes

Pk|k =
(
I− LkC) cov(xk − x̂k|k−1

)
(I− LkC)T + Lk cov (vk) LT

k

= (I− LkC)Pk|k−1(I− LkC)T + LkVLT
k

= Pk|k−1 − LkCPk|k−1 −Pk|k−1C
TLT

k + Lk(CPk|k−1C
T + V)LT

k
Ding Zhao (CMU) M2-3: Stochastic Control 21 / 41



Optimal Kalman Gain (Equation C-1 and C-3)

L∗k = min
Lk

E
[∥∥xk − x̂k|k

∥∥2] = min
Lk

tr(Pk|k)

Let
∂ tr(Pk|k)

∂ Lk
= −2Pk|k−1C

T + 2Lk(CPk|k−1C
T + V) = 0

L∗k = Pk|k−1C
T(CPk|k−1C

T + V)−1 (C-1)

Let us plug L∗k into Pk|k. Since

Pk|k−1C
TL∗Tk − L∗k(CPk|k−1C

T + V)L∗Tk = (Pk|k−1C
T − L∗k(CPk|k−1C

T + V))L∗Tk = 0,
therefore, when applying the Optimal Kalman Gain (omit ∗ from now), we have

Pk|k = Pk|k−1 − LkCPk|k−1 = (I− LkC)Pk|k−1 (C-3)
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Still Need to Compute Pk|k−1 (P-2)

xk = Axk−1 + Buk + wk

x̂k|k−1 = Ax̂k−1|k−1 + Buk

Pk|k = cov(xk − x̂k|k)

Pk|k−1 = cov(xk − x̂k|k−1)

Pk|k−1 = cov(xk − x̂k|k−1)

= cov(Axk−1 + Buk + wk −Ax̂k−1|k−1 −Buk)

= cov(A(xk−1 − x̂k−1|k−1) + wk)

= cov(A(xk−1 − x̂k−1|k−1)) + cov(wk)

= APk−1|k−1A
T + W
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Summary: ”Hi-Five” Kalman Filter Algorithm

Initiate with x̂k−1|k−1 and Pk−1|k−1
Predict
(P-1) Predict the state
x̂k|k−1 = Ax̂k−1|k−1 + Buk
(P-2) Predict the error covariance
Pk|k−1 = APk−1|k−1A

T + W

Take x̂k|k−1 and Pk|k−1
Correct
(C-1) Compute the Kalman gain
Lk = Pk|k−1C

T(CPk|k−1C
T + V)−1

(C-2) Update estimate with new measurement
x̂k|k = x̂k|k−1 + Lk(yk −Cx̂k|k−1)

(C-3) Update the error covariance
Pk|k = (I− LkC)Pk|k−1
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How to Know W and V

In the actual implementation of the filter, the measurement noise covariance V is usually
measured prior to operation of the filter.

The process (system) noise covariance W is generally more difficult to estimate as we
typically do not have the ability to directly observe the process. If the measurement noise
is small, we may choose a small W to force the output behave more certain and measure
the randomness.

In either case, whether or not we have a rational basis for choosing the parameters, often
times superior filter performance (statistically speaking) can be obtained by tuning the
filter parameters W and V.

Pk|k = (I− LkC)Pk|k−1 is computationally cheaper and thus nearly always used in
practice, but is only correct for the optimal gain. If arithmetic precision is unusually low
causing problems with numerical stability, this simplification cannot be applied; Joseph
form must be used.
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The Linearity Assumption Revisit for Kalman Filter

Assumption violated for Nonlinear System

If p(x) has high variance relative to region in
which linearization is inaccurate.

If p(x) has small variance relative to region in
which linearization is accurate
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Extended Kalman Filter - A Direct Intuition using Linearization

xk = f(xk−1,uk) + wk

yk = h(xk) + vk

Let Fk =
∂f

∂x

∣∣∣∣
x̂k−1|k−1,uk

,Hk =
∂h

∂x

∣∣∣∣
x̂k|k−1

Replace A with Fk, C with Hk. We get EKF.

Initiate with x̂k−1|k−1 and Pk−1|k−1
Predict
(P-1) Predict the state
x̂k|k−1 = f(x̂k−1|k−1,uk)

(P-2) Predict the error covariance
Pk|k−1 = FkPk−1|k−1F

T
k + Wk

Take x̂k|k−1 and Pk|k−1
Correct
(C-1) Compute the Kalman gain
Lk = Pk|k−1H

T
k (HkPk|k−1H

T
k + Vk)

−1

(C-2) Update estimate with new measurement
x̂k|k = x̂k|k−1 + Lk(yk − h(x̂k|k−1))

(C-3) Update the error covariance
Pk|k = (I− LkHk)Pk|k−1
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Issues of EKF for ”Very” Nonlinear System

Courtesy: E. A. Wan and R. van der Merwe
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Concept of the Unscented Kalman Filter

Courtesy: Cyrill Stachniss
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Sigma Points

For a random vector x = (x1, . . . , xL), sigma points are any set of vectors

{s0, . . . , sN} =
{(

s0,1 s0,2 . . . s0,L
)
, . . . ,

(
sN,1 sN,2 · · · sN,L

)}
attributed with

first-order weights W a
0 , . . . ,W

a
N that fulfill

1
∑N

j=0W
a
j = 1

2 E [xi] =
∑N

j=0W
a
j sj,i for all i = 1, . . . , L

second-order weights W c
0 , . . . ,W

c
N that fulfill

1
∑N

j=0W
c
j = 1

2 E [xixl] =
∑N

j=0W
c
j sj,isj,l for all pairs (i, l) ∈ {1, . . . , L}2
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One Popular Choice of Sigma Points

Sigma points First-order (mean) Weights Second-order (co-variance) weights

s0 = x̂k−1|k−1 W a
0 = α2κ−L

α2κ
W c

0 = W a
0 + 1− α2 + β

sj = x̂k−1|k−1 + α
√
κAj

sL+j = x̂k−1|k−1 − α
√
κAj

j = 1, . . . , L

W a
j =

1

2α2κ
j = 1, . . . , 2L

W c
j = W a

j

Choice of hyper-parameters

α and κ control the spread of the signma points. Usually α = 10−3, κ = 1 is
recommended

β is related to the distribution of x. If the true distribution of x is Gaussian, β = 2 is
optimal.

The A where Pk−1|k−1 = AAT. The matrix A should be calculated using numerically
efficient and stable methods such as the Cholesky decomposition.
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Algorithms of the Unscented Kalman Filter

Predict

Given the estimates of the mean and covariance x̂k−1|k−1 and Pk−1|k−1, we can obtains
N = 2L+ 1 sigma points. The sigma points are propagated through the transition
function

xj = f (sj) j = 0, . . . , 2L

The propagated sigma points are weighed to produce the predicted mean and covariance

x̂k|k−1 =

2L∑
j=0

W a
j xj

Pk|k−1 =

2L∑
j=0

W c
j

(
xj − x̂k|k−1

) (
xj − x̂k|k−1

)>
+ Wk
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Algorithms of the Unscented Kalman Filter (continued)

Correct

Given prediction estimates x̂k|k−1 and Pk|k−1, a new set of N = 2L+ 1 sigma points
s0, . . . , s2L with corresponding weights is calculated. The sigma points are transformed
through measurement function

zj = h (sj) , j = 0, 1, . . . , 2L

Then the empirical mean and covariance of the transformed points are calculated

ẑ =

2L∑
j=0

W a
j zj

Ŝk =

2L∑
j=0

W c
j (zj − ẑ) (zj − ẑ)> + Vk
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Algorithms of the Unscented Kalman Filter (continued)

Correct (continued)

The cross covariance matrix is also needed

Csz =

2L∑
j=0

W c
j

(
sj − x̂k|k−1

)
(zj − ẑ)>

where sj are the untransformed sigma points created from x̂k|k−1 and Pk|k−1.

The Kalman gain can be calculated as

Lk = CszŜ
−1
k

The corrected mean and variance estimates are

x̂k|k = x̂k|k−1 + Lk (yk − ẑ)

Pk|k = Pk|k−1 − LkŜkL
>
k
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EKF VS UKF

EKF: xk = f(xk−1,uk) +wk
yk = h(xk) + vk

Fk =
∂f

∂x

∣∣∣∣
x̂k−1|k−1,uk

,Hk =
∂h

∂x

∣∣∣∣
x̂k|k−1

Initiate with x̂k−1|k−1 and Pk−1|k−1

Predict
(P-1) Predict the state
x̂k|k−1 = f(x̂k−1|k−1,uk)
(P-2) Predict the error covariance
Pk|k−1 = FkPk−1|k−1F

T
k +Wk

Take x̂k|k−1 and Pk|k−1

Correct
(C-1) Compute the Kalman gain
Lk = Pk|k−1H

T
k (HkPk|k−1H

T
k +Vk)

−1

(C-2) Update estimate with new measurement
x̂k|k = x̂k|k−1 + Lk(yk − h(x̂k|k−1))
(C-3) Update the error covariance
Pk|k = (I− LkHk)Pk|k−1

Initiate with x̂k−1|k−1 and Pk−1|k−1

Predict
(P-1) Predict the state
s0 = x̂k−1|k−1, sj = x̂k−1|k−1 + α

√
κAj ,AAT = Pk−1|k−1

sL+j = x̂k−1|k−1 − α
√
κAj , j = 1, . . . , L

x̂k|k−1 =
∑2L
j=0W

a
j xj ,xj = f (sj ,uk) , j = 0, . . . , 2L

Wa
0 = α2κ−L

α2κ
,Wa

j = 1
2α2κ

(P-2) Predict the error covariance

Pk|k−1 =
∑2L
j=0W

c
j

(
xj − x̂k|k−1

) (
xj − x̂k|k−1

)>
+Wk

W c
0 =Wa

0 + 1− α2 + β,W c
j =Wa

j

Take x̂k|k−1 and Pk|k−1

Correct
(C-1) Compute the Kalman gain

Lk = CszŜ
−1
k , zj = h (sj) , j = 0, 1, . . . , 2L, ẑ =

∑2L
j=0W

a
j zj

Ŝk =
∑2L
j=0W

c
j (zj − ẑ) (zj − ẑ)> +Vk

Csz =
∑2L
j=0W

c
j

(
sj − x̂k|k−1

)
(zj − ẑ)>

(C-2) Update estimate with new measurement
x̂k|k = x̂k|k−1 + Lk (yk − ẑ)

(C-3) Update the error covariance Pk|k = Pk|k−1 − LkŜkL
>
k
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Definition of SLAM

Building a map and locating the robot in the map at the same time

Given

Robots control input u1:T = {u1, u2, u3, . . . , uT }
Sensor measurements y1:T = {y1, y2, y3, . . . , yT }

Want

Map of the environment m
Trajectory of the robot x0:T = {x0, x1, x2, . . . , xT }
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Apply EKF to SLAM

Estimate robot’s pose and location of map features in the environment.

Assume we know the correspondence of map features across different time steps.

State space is xt = [Xt, Yt, ψt︸ ︷︷ ︸
robot’s pose

, m1
x,m

1
y︸ ︷︷ ︸

landmark 1

, · · · , mn
x,m

n
y︸ ︷︷ ︸

landmark n

]T , where Xt, Yt, ψt are the global

position and heading angle of the robot. mj
x and mj

y are the global position of the map
feature j for j = 1, · · · , n.

The dynamical system of the robot is

Xt+1 = Xt + δtẊt + ωxt

Yt+1 = Yt + δtẎt + ωyt

ψt+1 = ψt + δtψ̇t + ωψt

where δt is the time step, and ωxt , ωyt , ωψt are the dynamical noise.
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Apply EKF to SLAM (continued)

A robot will have both range and bearing measurements relative to the map features
(landmarks), which can be achieved by using sensors such as LiDAR.

The range measurement is defined as the distance to each feature with the measurement
equations yjt,distance =

∥∥mj − pt
∥∥+ vjt,distance for j = 1, ..., n, where mj = [mj

x,m
j
y]T ,

pt = [Xt, Yt]
T and vjt,distance is the range sensor measurement noise.

The bearing measure is defined as the angle between the vehicle’s heading (yaw angle)
and ray from the vehicle to the feature with the measurement equations
yjt,bearing = atan2(mj

y − Yt,mj
x −Xt)− ψt + vjt,bearing for j = 1, ..., n, where vjt,bearing is

the bearing sensor measurement noise.

We can apply EKF to estimate the state including the robot’s position, heading angle and
the location of the map features.

You will derive matrices A,B,C,D for EKF SLAM in your project.
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