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PID Control

Algorithms: u(t) = Kpe(t) +Ki

∫ t

0
e(τ) dτ +Kd

de(t)

dt

Transfer function: L(s) = Kp +Ki/s+Kds
Minorsky, 1885-1970

image Courtesy a Arturo Urquizo
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Intuition of PID

Take the example of lateral control of a car. Define Cross Track Error (CTE) as the distance
of the car from trajectory.
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Recap: Linear CONTROL Systems - A Brief History

Control:continuously operating dynamical systems

modern control theory in
engr,bio,med,econ,social etc.

Machine learning controls
nolinear model-free

genetic algorithm, neural network
reinforcement learning control

State space methods
linear model-based (MIMO)

optimal/stochastic/
adaptive control Rudolf Kalman (Apollo)

Root-locus method
due to Evans

was fully developed

Frequency response methods
made it possible to

design linear closed-loop Norbert Wiener (Cybernetics)

Nyquist/Bode (Bell Lab) developed
methods for analyzing

the stability of
controlled systems

Minorsky worked on
automatic controllers (PID)

for steering ships

Present1980s1960s1950s1940s1930s1920s
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A Breif History

In 1922, Minorsky helped in the installation and testing of automatic steering on board
the battleship USS New Mexico. In relation to this work Minorsky authored a paper
introducing the concept of Integral and Derivative Control. This paper is one of the
earliest formal discussions on control theory in the English language.

1924–1934 Nicolas Minorsky was a Professor of Electronics and Applied Physics at Penn.

Navy requests to investigate anti-rolling devices on ships. The ability to stabilize a ship
such as an aircraft carrier would be extremely useful during the landing of airplanes.

1934 to 1940, Minorsky worked on roll stabilization of ships for the navy, designing an
activated-tank stabilization system into a 5-ton model ship, later on dubbed as ”USS
Minorsky”.

A full-scale version of the system was tested in the USS Hamilton but exhibited control
stability problems. Very promising results were beginning to appear when the outbreak of
the Second World War interrupted further development as the Hamilton was called to
active duty and the 5 ton model was put into storage.

In 1942, Ziegler and Nichols introduced tuning rules.
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Tuning method: Ziegler–Nichols Method

The ultimate gain Ku: set KI and KD to 0, increase KP until the output of the control loop
has stable and consistent oscillations to get Ku and the oscillation period Tu. Z-N yields an
aggressive gain and overshoot – some applications wish to instead minimize or eliminate
overshoot, and for these this method is inappropriate. In this case, use the last two rows.
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Tuning method: Twiddle Algorithm

# Choose an initialization parameter vector

p = [0, 0, 0]

# Define potential changes

dp = [1, 1, 1]

# Calculate the error

best_err = robot(p)

threshold = 0.001

while sum(dp) > threshold:

for i in range(len(p)):

p[i] += dp[i]

err = robot(p)

if err < best_err:

# There was some improvement

best_err = err

dp[i] *= 1.1

else: # There was no improvement

p[i] -= 2 * dp[i]

# Go into the other direction

err = robot(p)

if err < best_err:

# There was an improvement

best_err = err

dp[i] *= 1.05

else: # There was no improvement

p[i] += dp[i]

# As there was no improvement,

# the step size in either direction,

# the step size might simply be too big.

dp[i] *= 0.95

Courtesy at Martin Thoma
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Feedback Control

Benefits of feedback
1 Stabilize unstable systems
2 Improve transient response (speed)
3 Reject disturbances
4 Increase robustness to modeling errors

We will consider “state feedback” ⇒ u = Kx

For systems that do not output all the states, we will estimate unmeasured states with an
observer
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SISO State Feedback

Consider the LTI SISO system

ẋ = Ax+ bu

y = cx+ du

and u = Kx+ Ev (Feed forward. We will see how to design it later.)

⇒ ẋ = (A+ bK)x+ bEv, y = (c+ dK)x+ dEv

where, A+ bK = Afb

We know that the stability of the system depends on the eigenvalues of Afb

Goal: Given a set of desired eigenvalues {λd}, design K s.t. A+ bK has eigenvalues λd.
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Recap: Controllable Canonical Forms for the SISO System

Given a SISO system: G(s) =
bns

n + · · ·+ b0
sn + an−1sn−1 + · · ·+ a0

ẋ =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .

0 0 0 · · · 1
−a0 −a1 · · · · · · −an−1

x+


0
0
...
0
1

u
y =

[
b0 − bna0 b1 − bna1 · · · bn−1 − bnan−1

]
x+ bnu

We can also arrive at this form via a similarity
transformation using Mc.

Mc = PP−1
c
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Feedback with Controllable Canonical Form

The easiest way to design SISO feedback controllers is to start with controllable canonical
form (of course, given the system is controllable).

Let

˙̃x = Ãx̃+ B̃u =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

 x̃+


0
0
...
0
1

u

Let u = K̃x̃ =
[
k̃0 k̃1 · · · k̃n−1

]
x̃

⇒ B̃K̃ =
[
0 0 · · · 0 1

]T [
k̃0 k̃1 · · · k̃n−1

]
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Pole Placement with Controllable Canonical Form

⇒Ã+ B̃K̃ =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−a0 + k̃0 −a1 + k̃1 −a2 + k̃2 · · · −an−1 + k̃n−1


From Controllable Canonical Form, the characteristic equation for Ã+ B̃K̃ is

∆(s) = sn + (an−1 − k̃n−1)s
n−1 + · · ·+ (a1 − k̃1)s+ (a0 − k̃0)

⇒ By choosing K̃, we can get any ∆(s) we want ⇒ any eigenvalues!
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Controllable Canonical Form

We still need to convert K̃ to K to work with the original system form (similarity
transformation)

Let the original system be x and the Controllable Canonical Form system be x̃. Then
x = Mx̃ with M = PP−1

c . Given K̃ designed for Ã, we can calculate K.

u = Kx = K̃x̃ = KMx̃

K = K̃M−1

Ding Zhao (CMU) M2-1: Pole Placement 16 / 45



Example

Place poles of

ẋ =

[
1 3
4 2

]
x+

[
1
1

]
u, at -5 and -6

Solution:

∆(s) = (s− 1)(s− 2)− 12 = s2 − 3s− 10 ˙̃x =

[
0 1
10 3

]
x̃+

[
0
1

]
u

P =

[
1 4
1 6

]
, Pc =

[
0 1
1 3

]
, P−1

c =

[
−3 1
1 0

]
⇒M = PP−1

c =

[
1 1
3 1

]
,M−1 =

1

2

[
−1 1
3 −1

]
(λ+ 5)(λ+ 6) = λ2 + 11λ+ 30 = λ2 + (−3− k1)λ+ (−10− k0)
⇒ k̃1 = −14, k̃0 = −40⇒ K̃ =

[
−40 −14

]
⇒ K =

[
−40 −14

]
M−1 ⇒ K =

[
−1 −13

]
Ding Zhao (CMU) M2-1: Pole Placement 17 / 45



Example

It’s not hard to verify that the closed loop system has the desired eigenvalues.

Clearly if the system is controllable, we can place the poles... what if it’s not?
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Example

ẋ =

[
−2 0
0 −2

]
x+

[
1
3

]
u

Controllable? No - by observing the Jordan blocks.

Solution:

Let K =
[
k0 k1

]
and u = Kx ⇒ A+ bK =

[
−2 + k0 3k1
k0 −2 + 3k1

]

⇒ |λI − (A+ bK)| = |
[
λ+ 2− k0 −3k1
−k0 λ+ 2− 3k1

]
|

= (λ+ 2− k0)(λ+ 2− 3k1)− 3k0k1 = (λ+ 2)2 − (k0 + 3k1)(λ+ 2)

= (λ+ 2)(λ+ (2− k0 − 3k1))

In general, one or more eigenvalues of an uncontrollable system will be unaffected by
state feedback.
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SISO State Observers

We have used the full state vector in feedback, but really only measure y.

An observer takes as inputs u and y returns an estimator of x.

Why not just use ˙̃x = Ax̃+Bu, ỹ = Cx̃+Du, x̃(t0) = x(t0)?

This only replies on model-based prediction, it can be used used in a short period of time,
but we also need to correction to deal with modeling errors/disturbance.
Only replying on prediction is akin to ruining with eyes closed.
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Dynamics of SISO State Observers

Let’s try the following to get y involved

˙̃x = Ax̃+Bu+ L(y − ỹ)

= Ax̃+Bu+ L(y − (Cx̃+Du))

= (A− LC)x̃+ (B − LD)u+ Ly

Define the error e = x− x̃

⇒ ė = Ax+Bu− (A− LC)x̃− (B − LD)u− L(Cx+Du)

= Ae− LCe = (A− LC)e

⇒ ė = (A− LC)e

Based on stability theory, e→ 0 as t→∞ ⇔ A− LC has poles in the LHP
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Recap: Observable Cononical Form for the SISO System

ẋ =


−an−1 1 0 · · · 0

... 0 1 · · · 0

...
...

...
. . .

−a1 0 0 · · · 1
−a0 0 · · · · · · 0

x+


bn−1 − bnan−1

...
b1 − bna1
b0 − bna0

u

y =
[
1 0 · · · 0

]
x+ bnu

Similarly: we could arrive at the observable canonical via similarity transformation:
Mo = Q−1Qo
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Pole Placemnet for SISO Observers in Observable Canonical Form

We can arbitrarily place the poles ⇔ (A,C) is observable.

Ã− L̃C̃ =


−ãn−1 1 0 · · · 0
−ãn−2 0 1 · · · 0

...
...

...
. . . 0

−ã1 0 0 · · · 1
−ã0 0 0 · · · 0

−
l̃n−1

...

l̃0

 [1 0 · · · 0
]

=


−ãn−1 − l̃n−1 1 0 · · · 0

−ãn−2 − l̃n−2 0 1 · · · 0
...

...
...

. . . 0

−ã1 − l̃1 0 0 · · · 1

−ã0 − l̃0 0 0 · · · 0


Can achieve arbitrary pole placement via choice of L̃! To solve original eigenvalue problem,
convert via L = ML̃ with M = Q−1Qo.
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Example

Design an observer for A =

[
1 3
4 2

]
, C =

[
1 0

]
with poles at -10, -20

Solution:

∆(s) = (s− 1)(s− 2)− 12 = s2 − 3s− 10

∆fb(s) = (s+ 10)(s+ 20) = s2 + 30s+ 200

= s2 + (−3 + l̃1)s+ (−10 + l̃0)

⇒L̃ =

[
33
210

]
Now convert back to original variables

Ã =

[
3 1
10 0

]
, M = Q−1Qo =

[
1 0
1 3

]−1 [
1 0
3 1

]
=

[
1 0
2
3

1
3

]
L = ML̃ =

[
33
92

]
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Observer Structure

For SISO, the observer can be expressed as a 2-input ([u, y − ỹ]) and (n+1)-output system
([x̃, ỹ])

˙̃x = Ax̃+Bu+ L(y − ỹ)

= Ax̃+
[
B L

] [
u y − ỹ

]T
yo =

[
x̃
ỹ

]
=

[
In
C

]
x̃+

[
0n
D

]
u
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SISO Feedback Control with Observer

By using an observer and performing state feedback on x̃, we can build an output feedback
controller.

u = Kx̃

⇒ẋ = Ax+BKx̃, y = Cx+Du

˙̃x = Ax̃+Bu+ L(y − ỹ)

ỹ = Cx̃+DKx̃

⇒ ˙̃x = Ax̃+BKx̃+ L(Cx+DKx̃− (Cx̃+DKx̃))

= (A− LC +BK)x̃+ LCx

Now stack

[
ẋ
˙̃x

]
=

[
A BK
LC A− LC +BK

] [
x
x̃

]
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SISO Feedback Control

Transfom via Me =

[
I 0
I −I

]
. M−1

e = Me

[
x(t)
e(t)

]
=

[
I 0
I −I

] [
x
x̃

]
⇒
[
ẋ
ė

]
=

[
I O
I −I

] [
A BK
LC A− LC +BK

] [
I O
I −I

] [
x
e

]
=

[
A+BK −BK

0 A− LC

] [
x
e

]
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Separation Principle

Can show through properties of the determinant that the characteristic equations is:

∆(s) = |sI − (A− LC)| · |sI − (A+BK)|

⇒ The eigenvalues of the augmented system are the same as the separate controller/observer.
-This is called the separation principle. Observers & controllers can be designed separately.
-However, we should be careful to make the observer faster (3-5 times to the left on complex
plane) than the controller.
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Structure of the Full Controller

The full controller takes the form

y

+

-

ey
˙̃x = Ax̃+ [B L]

[
u
ey

]
[
x̃
ỹ

]
=

[
I
C

]
x̃ +

[
0 0
D 0

] [
u
ey

]
x̃
ỹ u = Kx̃

u
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Controller Transfer Functions

-Let’s now look at the controller TF to compare with classical methods,

˙̃x = Ax̃+BKx̃+ L(y − (Cx̃+DKx̃))

= (A+BK − LC − LDK)x̃+ Ly

u = Kx̃

⇒ C(s) = U(s)
Y (s) = K(sI − (A+BK − LC − LDK))−1L

-For a full state observer, the controller has order n
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Reduced Order Observer

-In some cases, the output contains direct measurement of a subset of the state variables - no
need to estimate those.

-The transformation M−1 =

[
q linearly independent rows of C

n− q additional ind. rows

]
transforms any system into

the form [
ẋ1
ẋ2

]
=

[
A11 A12

A21 A22

] [
x1
x2

]
+

[
B1

B2

]
u

y =
[
Iq×q 0

] [x1
x2

]
+Du = x1 +Du
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Reduced Order Observer

Note that x1 is measured by y & we can rewrite as

A12x2 = ẋ1 −A11x1 −B1u

ẋ2 = A22x2 +B2u+A21x1

Define: u , A21x1 +B2u

y , ẋ1 −A11x1 −B1u

⇒ ẋ2 = A22x2 + u

y = A12x2

We can now observe x2 via

˙̃x2 =

prediction︷ ︸︸ ︷
A22x̃2 + u+

correction︷ ︸︸ ︷
L(y − ỹ) = (A22 − LA12)x̃2 + u+ Ly

where ˜̄y = A12x̃2 and ȳ can be obtained from direct measurement ȳ = ẋ1 −A11x1 −B1u
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Reduced Order Observer

-Now look at the error

ė = ẋ2 − ˙̃x2

= A22x2 + u− (A22x̃2 + u+ L(A12x2 −A12x̃2))

= A22(x2 − x̃2)− LA12(x2 − x̃2)
= (A22 − LA12)e

Check e-values of A22 − LA12 for convergence. If (A, C) observable, we could always find L
to stablize the system.
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Reduced Order Observer

However, what if we don’t have access to ẋ1?
Define: z = x̃2 − Lx1

ż = ˙̃x2 − Lẋ1
= (A22 − LA12)x̃2 + u+ Ly − Lẋ1
= (A22 − LA12)x̃2 + u− L(A11x1 +B1u)

ż = (A22 − LA12)z + [(A22 − LA12)L+A21 − LA11]x1 + (B2 − LB1)u

We could then use it to estimate z and then get x̃2 = z + Lx1
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Reduced Order Observer

Design L to place the observer eigenvalues.
Design state feedback as before with [

x1
x̃2

]
=

[
y −Du
z + Lx1

]
u = k

[
x1
x̃2

]
= K

[
y −Du
z + Lx1

]
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MIMO Systems

MIMO systems

For multi-input controllers and multi-output observers, the pole placement problem does
not have a unique solution.

Fundamentally, need to solve the eigenvalue problem to set eigenvalue of A+BK

Note that the observer design problem can be written in the same form by placing
eigenvalue of AT − CTLT

(Dual Problem)

The observability of

{
ẋ = Ax+Bu
y = Cx+Du

⇔ Controllability of

{
ẋ = ATx+ CTu
y = BTx+Du

The python scipy.signal.place poles command solves the MIMO problem as well
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Design Controllers for MIMO Systems

By hand, use a similarity transformation and solve a Lyapunov equation.

1 Create an n× n matrix F with desired eigenvalues with no
overlapping eigenvalues of A (restriction on this method)

2 Select an arbitrary p× n matrix K such that
(
F,K

)
is observable

3 Solve for T in AT − TF = −BK (Sylvester equation), if T is singular, go back to 2

4 Use K = KT−1 as feedback controller

Proof: Similarity transformation! AT − TF = −BKT , (A+BK)T = TF
⇒ A+BK = TFT−1 ⇒We wantA+BK is similar to F

Sylvester, 1814-1897
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Example

A =


0 1 0 0
0 0 1 0
−3 1 2 3
2 1 0 0

, B =


0 0
0 0
1 2
0 2


λd = −4± 3j, −5± 4j
Write F in Controllable Canonical Form

∆(s) = (s+ 4 + 3j)(s+ 4− 3j)(s+ 5 + 4j)(s+ 5− 4j)

= s4 + 18s3 + 146s2 + 578s+ 1025

⇒ F =


0 1 0 0
0 0 1 0
0 0 0 1

−1025 −578 −146 −18


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Example

Let K =

[
1 0 0 0
0 1 0 0

]
(can check rank



K

KF

KF 2

KF 3


 = 4 Now use Python

(scipy.linalg.solve sylvester) to solve the Sylvester equation

⇒ K = KT−1 =

[
−0.2256 0.0641 0.008 0.5027
−146.73 −40.66 −9.61 −0.39

]
Can check ...

numpy.linalg.eig(A+BK) = −4± 3j, −5± 4j
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Example

Control is not unique! with K =

[
1 0 0 1
0 1 1 0

]
get

K =

[
−267.98 −237.25 −22.50 44.44
−13.73 −5.12 0.91 0.33

]
, same eigenvalues!
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Design Observer for MIMO Systems

An analogous procedure exists for observers:

1 Create an n× n matrix F with desired eigenvalues 6= eigenvalues of A (restriction on this
method)

2 Select an arbitrary n× q matrix L such that
(
F,L

)
is controllable

3 Solve Sylvester equation TA− FT = LC, if T is singular, go to (2)

4 Use L = T−1L as observer gains
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