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Stability Lyapunov 1857-1918
Markov 1856-1922
Chebyshev 1821-1894

Stability is one fundamental dynamic property
of a system. Essentially we care about

Does the solution behave well as t — 00?

Stability only depends on the zero input response at equilibrium
points

o CT systems: & = f(T,t9,t) =0
e DT systems: z[k + 1] = z[k] , M€

Examples: balancing stones, Tacoma Narrows Bridge,
biped robots, spinning of cars.
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https://www.youtube.com/watch?v=UqU19dR0bFE
https://www.youtube.com/watch?v=j-zczJXSxnw
https://www.youtube.com/watch?v=_sBBaNYex3E
https://www.youtube.com/watch?v=1pgm8I0B8bY

Definitions of Stability in the Sense of Lyapunov (i.s.L)

There are various ways to define “well-behaved”.

@ An equilibrium point T of & = A(t)x is stable i.s.L if, Ve > 0,30(¢p,€) > 0 s.t.
l|z(to) — Z|| <6, ||x(t) — Z|| < €Vt > tp.

e If 6 = d(e) (independent of ty), T is uniformly stable (time invariant).
o If ||z(t) — Z|| — 0 as t — oo, T is asymptotically stable.

o If T is asymptotically stable and 36 > 0,y > 0, A > 0 s.t.
||lz(t) — || < ve™*||z(to) — Z||, T is exponentially stable.
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Recap: Example

K2 .%':% + 2129
| —wo + 2x179
1. Find equilibria
3
1 — 2] +x122 =0
! ! 12 :>x2(2x1—1):0:>$2:00rx1:%

0,0), (1,0),(=1,0)
)

2. Linearization

—To+2x1220 =0
$2—0:>x1(1—a:1)—0:x1—0x1—1ml —1=
xr] = *:>*—*+ $2—0:>.1‘2 ( 1+22) (% %

Bi_ 1— 322 + 29 1
ox 219 21 — 1
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Recap: Phase Portrait Plot
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Stability of CT LTI Systems

T for t = Az is stable &

all e-values of A have non-positive real parts, and those with zero real parts are non-defective.

Proof:
For LTI systems, the solution to zero input response is z(t) = eA*z(0). 2(0) < oco. If elements

of e are finite as t — oo, then the system is stable i.s.L.

9/51
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Recap: Ways to compute e“?

© Apply the series definition:

14t oo Ak¢k
k=0 "k

@ Apply Cayley-Hamilton theorm:

A= Bol + Br1A+ -+ B A"
© Use similarity transformations:

At _ MeJthl
© [New] Inverse Laplace Transformation:

Compute (sI — A)~!, then compute .Z~1{i, j'* element of (sI — A)~'}. Gives i, j*

element of et

&= Az + Tu. Assume z(0) =0, = sX(s) = AX(s) +IU(s) = X(s) =

If u(t) = 5( ) U( )= 1. a:( ) =LY ((sI — A)7!
x(t) = e tx(0) + ft AC=TI5(1)dr = eAt fot e To(T)dr =
eAt( fo T)dT + f0+ e T(T)dr) = et f00+ 16(T)dr = e
Which one may heIp to analyze the stability?
M1-5: Stability

~U(s)
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Recap: Similarity Decomposition

Using a similarity transformation, we can convert the state equation into diagonal (or Jordan)
form.

Let z = Mx where M = [vj:vy: - - - iv,] are the eigenvectors (or generated e-vectors) of A

x=M1AMx+ M~'Bu
y=CMx+ Du

Here J = M~'AM is in either diagonal or Jordan form. In either case, e/t is easier to
computer.
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Recap: Jordan Decomposition In General

Let A be an n X n matrix with eigenvalues A1,..., A\, of algebraic multiplicities mq, ..., m,

and geometric multiplicities g1, ...,q,. Then 3 an invertible matrix M such that
J =M"1AM, where

Jo o 0 0
0 J, 0 O o
J= #blocks = p(#distinct e-values)
0 0 0
0 0 0 Jp], ..
Jua 0 0 0
. A1 0
. 0 Ji2 0 0 . !
Ji= . Jij=10 "~ 1
0 0 0 0 0 A\
0 0 0 Jigl, .. Az
#blocks = ¢;( #indep e-vectors assoc. with \;) In general, we do not know what is the
dimensions for the 3rd level Jordan blocks except in type I, Iy, or lls.
M1-5: Stability
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Recap: Exponential of Jordan Form cont.

21 0 0
Given J = 8 (2) ; 8 , find et/
0 0 0 1
J1 0 etJr 0
J:[ol J2:|:>etJ:|:0 et‘h}
2 00 01 0
Ji=D+N = ( 0 2 0 + 0 0 1
0 0 2 0 0 0
e 0 0
etP = 0 €2 0 |. Needto compute eV
0 0 e
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Recap: Exponential of Jordan Form

Apply Cayley-Hamilton theorem:

010 010 0 0 1
A=0,f(N)=eN,N2=]10 0 1 00 1f(={000],
0 00 000 000
f(>\) — etA — Lf/()\) — tet/\ — t, f”()\) — t2 tA t2
g(A) = BaX? + Bid + Bo = Bo, g'(A) = 2BoX + B1 = B1, 9" (N) = 282
F) =g\, f'(N) =g N, f"(N) = g"(A) = Bo =1, 55 =1,y = 5t°
1t 3t
eN=f(N)=g(N)=1N?+tN+I=|0 1 t
0 0 1
eZt t€2t thth
Finally, because DN = ND, et/t = ¢tP+N) — otD . tN — | o e2t o2
0 0 e?t

Ding Zhao (CMU)

M1-5: Stability

14 /51



Recap: Exponential of Jordan Form

eMt 0 0 0

Aot Aot
It 0 e te)\ t 0
0 0 e? 0

e’! has terms of the form t™etit, with m # 0 for Jordan blocks of order > 1. We will use this
trick again in the stability analysis.
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CT LTI Systems

et 0 0 . o 0
0 e)\Qt t€>\2t t26)\2t 0
=10 0 M ged 0

e’! has terms of the form t™e i, with m # 0 for Jordan blocks of order > 1. We just need to

make sure
t™elit 3l bounded

How to check e**? Remember \ is a complex number.

16 /51
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Euler's Formula

Im
L el? = cos @ +ising Euler, 1707-1783
sin ¢
L >
0|cos ¢ T Re
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CT LTI Systems

eMt 0 0 0

Aot Aot
It 0 e te)\ t 0
0 0 e 0

e’! has terms of the form t™eif, with m # 0 for Jordan blocks of order > 1. We just need to
make sure
t™eM" all bounded

Let A\; = Re + In,7, t™erit can be written as

tmeRet (cos(Int) + jsin(I,t))
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Stability of CT LTI Systems

Given
tmeftet (cos(It) + jsin(Int)),

consider the following cases:
Q V) ,R. <0 = Asymptotic stable

Q@ I\, ,R. >0 = Unstable
Q@ I\, ,Re=0,m =0 =Stableis.L.

Q@ 3\, ,R.=0,m >0 = Unstable
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Stability of DT LTI

T =0 for x(k + 1) = Axz(k) is stable <

all eigenvalues of A satisfy |\;| < 1 and all \;=1 are non-defective
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Stability of DT LTI

i(k) = Ak2(0) = MJ* M~ = 2(0) with J in Jordan form

MOENTL 000
k|0 X0 0
=1 . PYs

0 .

Use programming to check it: COLAB LINK

The system is stable < k™ )" is bounded as k — cc.
Write \; = r;e/%. The system is stable < k™rFel%k = kmrk(cos(0;k) + jsin(0;k)) is

bounded as k — oo.

21 /51
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https://colab.research.google.com/drive/1rICSLgGIzPsSyBj5-8WWrBjJ1GM_Ubl6?usp=sharing

Stability of DT LTI

Consider k™rFel%% = kmrk(cos(0;k) + 7 sin(6;k))
@ V), r; < 1= Asymptotic Stable

@ )\, r; > 1= Unstable
Q I)\,ri=1& m =0= Stable i.s.L.

Q@ d)\,r;=1& m > 0= Unstable
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Asymptotic Stability of LTI Systems

Z = 0 for & = Ax is asymptotically stable < all eigenvalues have negative real parts. £ =0
for z(k + 1) = Az(k) is AS < all eigenvalues of A satisfy |\;| < 1.
Every asymptotically stable LTI system is exponentially stable.
Why?
This follows directly from case from the prior equations.
limg o0 el [cos(Ipt + jsin(Ipnt)] =0 < u < 0
limg oo (B)"AN =0 & )\ < 1
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Recap: Example

K2 .%':% + 2129
| —wo + 2x179
1. Find equilibria
3
1 — 2] +x122 =0
! ! 12 :>x2(2x1—1):0:>$2:00rx1:%

0,0), (1,0),(=1,0)
)

2. Linearization

—To+2x1220 =0
$2—0:>x1(1—a:1)—0:x1—0x1—1ml —1=
xr] = *:>*—*+ $2—0:>.1‘2 ( 1+22) (% %

Bi_ 1— 322 + 29 1
ox 219 21 — 1
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Phase Portrait Plot

: 1 0 : —2 -1
oo ie=]t 9] o= [2
(1,0): 6= | 2 Y5 (13 b= |73 2]
9 . X 0 1 X 29 4 X _5 0 X
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Example: Driving

p=v

C  p0)=v(0)=0

p(t)
Which is the state?:
{p, .}, {p, B}, {p, P}, {p}, solve p(t)

Ding Zhao (CMU)

Is it stable? How about the discrete version of
the system?

xlzp,xgzp,xz[:vl,xg]T
. 0 1 0

<=1 o<+ [V |7
y:[l O]X

M1-5: Stability
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The Eigenvalues Tests Cannot be Used on LTV Systems Directly

© The eigenvalues of A(t) at any instant ¢ do not determine stability.
@ If the eigenvalues of A(t) + AT (t) are always negative, the system is asymptotically stable.
O If all eigenvalues of A(t) + AT(t) are always positive, the system is unstable.

@ If all eigenvalues of A(t) have negative real parts & 3V < oo s.t. ||A(t)|| < V, the
system is stable. (slowly time varying)

Note: We will not prove these claims.
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Example

i:l . -1 62t I . o
5 can be solved directly = x5(t) = e 'z2(0)

¢
x1 (t) = e tay (0) + / e~ ay (0) x e7dr
0

t
_ —t 2T
=e¢ 'x1(0)+22(0) xe /0 esldr = unstable, even though \; = \y =

—t PR —1 are negative V t
=c 21 (0) +22(0) x e x 5 < lo - Not slowly time varying
0
=e tx1(0)+x22( ) x (e —e™")
0 0
— et x <$1(0)—x22( )>+3722( ) et — ot
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Stabilizability & Detectability

Stabilizability:

A system is stabilizable<its uncontrollable modes are Lyapunov stable.

Can use control to stabilize any unstable controllable modes.

Detectability:

A system is detectable <its unobservable modes are Lyapunov stable.

Note: Kalman Decomposition is useful. But blindly applying K-D is risky. We may hide the
unstable states.
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How about the stability of the nonlinear system?

Linearization.
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Lyapunov’s Indirect (1%") Method

Let ©# = f(x). Linearize the system, we have
@ The origin is locally Asymptotically Stable if Re(\;) < 0, VA; of A
e Unstable if Re()\;) > 0 for any A;.
The implication is that we can design controllers for the linearized model & apply them to
the original nonlinear system.
e What if Re(\;) = 0 = very risky as we have used approximation for linearization (Taylor
expansion).
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Lyapunov's Direct (2"?) Method - lllustrative Example

-Define an abstract “energy-like” quantity & show that it decreases along the system
trajectories = stable.

X = [_Ok _14 X, X = [z,

S m m
k +—> The energy in the system is V (z,4) = & (mi? + ka?)
- Now look at how the energy changes over time
0 m V(z, &) = mii + kri = (bt — kx) + kxd = —bi?
b ONO) = the energy decreases when the system has any positive velocity

= the system must stop

- We now generalize this concept of energy to " Lyapunov
functions”
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Lyapunov's Direct (2"?) Method

Positive Definite Functions

e A function V(z) is positive (negative) definite in a neighborhood of the origin if V(z) > 0
(V(x) <0) for all x #£ 0 and 2(0) =0

e A function V(z) is positive (negative) semidefinite in a neighborhood of the origin if
V(z) >0 (V(x) <0) forall z # 0 and z(0) =0

Theorem

The origin of & = f(x) is stable if
e V(z) and its partial derivatives are continuous
e V(x) is positive definite

o V(x) is negative semidefinite

If V(z) is negative definite 3V (x) > 0, then the origin is asymptotically stable.

Ding Zhao (CMU) M1-5: Stability
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Example

Decide the stability of the following system

@ I = —x1 — 2:17%

@ Iy = x1x9 — ajg
Using V() = $a% + 23
Clearly V(z) > 0,Vx #0

V(z) = 2141 +2x0d0 = @1 (—21 —223) +2x9 (2120 —23) = —27—225 = —22 — 225 < 0,Vz # 0

Note V' (z) — oo as ||z|| — oo = The origin is globally, uniformly asymptotically Stable.
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DT Systems

All remains the same, except instead of V(x,t) we consider

AV (z, k) =V(x(k+1)) — V(x(k))
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Lyapunov's Direct (2"?) Method for LTI Systems

Consider V (x) = 7 Px for the system & = Az with P > 0.

Clearly V(z) > 0

V(z) = &' Pz + 2T Pi
= (Az)" Pz + 27 P(Ax)
= 2T ATPx 4+ 2T PAx
= 2T (ATP + PA)x

stable(Stable).

Lyapunov equation:

lyap(A4,Q) — ATP + PA = —Q , if Q > 0, asymptotically stable; Q > 0, stable.

= If ATP + PA < 0(<0), the system is asymptotically
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Calculate P

The origin of & = Az is AS < given a Q > 0, 3 a unique P > 0 s.t.

ATP+PA=—-Q

This can be easily proved by setting P = fooo eATthAtdt
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DT Lyapunov Equation

z(k+1) = Azx(k)

Assuming V (k) = o7 (k) Pz (k)
AV =V(k+1)—-V(k)
=2 (k+ 1)Px(k + 1) — 2T (k) Px(k)
= 2T AT (k) PAz (k) — 2z (k) Pz (k)
= AV = 2T (k)(ATPA — P)x(k)
The DT Lyapunov equation is given by dlyap(A4, Q) — ATPA—P=-Q
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Summary

@ For Linear systems, much easier to check e-values than find P.
@ Direct method is the method for non-linear systems in general

@ Lyapunov equation is useful in optimal control. We will see later in this class.
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Instability

Just because you cannot find a lyapunov function that satisfies V' < 0 does not means
instability.

The origin of & = A(t)x is unstable. if IV (x,t)
0 V(0,t) =0,Vt >
@ V(z,ty) > 0 for at least some point close to 0
@ V(z,t) > 0 (Chetaev function)
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Recap: Phase Portrait Plot
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Example

@ Show instability of & = [(1) _OJ x.

Tiy V(o) = bot - $oi. Consider o(t0) = |3

V(x) = 211 — Tode = 27 + 23 > 0,Va1, 22 # 0 = x = 0 is unstable.

] = V(z(ty)) =e2 >0
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Example

0 1
A little bit hard to find a proper V' by observation. Try Lyapunov Function. To prove instability, we set
ATP+PA=Q. Let V=2"Pz. V =27 (ATP 4+ PA)x = 2" Qx. If Q positive definite and we can find
V' > 0 in some neighborhood of the origin, then the system is unstable.

—2 0f|a b 4@ b |-2 1| |4 O
1 1(|b ¢ b ¢/ |0 1| |0 4
—2a—2a=4,-2b+a+b=0,a+b—-2b=0,b+c+b+c=4=a=b=—-1,c=3 Let

-1 -1
V(z) =a” {_1 3 } = (—x1 — x2)x1 + (—21 + 3x2)T2 = —27 — 22102 + 323

@ Show instability of & = [_2 1} .

Consider x(tg) = {g] = V(z(to)) =3¢ >0

V(ZC) = —2x1%1 — 281T2 — 2x1%2 + 6x2@2 = 72.2131(72231 =+ .2132) — 2(721’1 —+ :EQ):CQ
—2x179 4 623 = 427 + 423 > 0,Vz1, 22 # 0 = x = 0 is unstable.
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BIBO & BIBS Stability

An alternative definition of stability that takes into account the forced response
Consider the LTV system

&= A(t)x+ B(t)u
y=C(t)xr+ D(t)u

IA@®)]| < M, ||[B@)|| < N, [[C#)]| <O, [ID@)]| < P

BIBO Stability: An LTV system is BIBO stable if for any w(¢), ||u(t)|| < M, & for

{/C(to) =0, ElN(M,tQ) < o0 s.t. Hy(t)H < N, Vt > 1.

BIBS Stability: An LTV system is BIBS stable if for any u(t), ||u(t)|| < M, & for

.%'(t()) =0, 3N<M,t0) < o0 s.t. H(I}(t)H < N, Vit > ty.

Note:This is NOT the same as Lyapunov stability. A system could be BIBO stable even if not
Lyapunov stable!
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Theorem

@ Testing BIBO stability can be conveniently using transfer functions in the frequency

domain

Let Go(s) = C(sI — A)"'B + D.
A CT LTI system is BIBO stable < every pole of every G¢,, have negative real part.
Let Gp(s) = C(zI — A)"'B+ D.
A DT LTI system is BIBO stable < every pole of every Gp,; is inside the unit circle.
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Relationships among Stability Types

o Lastly, let's consider the relationships among stability types
BIBS
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Example: BIBO Stable even if not Lyapunov Stable
. [-2 5 4
o[ e[
y=1[7 8]z+1.5u

@ Stability i.s.L: Ay = —2, Ay = 3 = unstable
e BIBO Stability:

_ (5—3)(s+20.67) s+ 20.67
) = TGy sto
— BIBO Stable!.

Note: The minimal realization/Kalman Decomposition cancelled out the unstable poles
with zeros.

Ding Zhao (CMU) M1-5: Stability 51/51



	Definitions of Stability
	Stability of Linear Time Invariant Systems
	Stability of Linear Time Varying Systems
	Stability of Nolinear Systems
	Lyapunov's Indirect Method
	Lyapunov's Direct Method

	Instability
	BIBO & BIBS Stability

