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Stability

Stability is one fundamental dynamic property
of a system. Essentially we care about

Does the solution behave well as t→∞?

Stability only depends on the zero input response at equilibrium
points

CT systems: ẋ = f(x, t0, t) = 0

DT systems: x[k + 1] = x[k]

Examples: balancing stones, Tacoma Narrows Bridge,
biped robots, spinning of cars.

ε

δ

S

AS

Lyapunov 1857-1918
Markov 1856-1922

Chebyshev 1821-1894
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https://www.youtube.com/watch?v=UqU19dR0bFE
https://www.youtube.com/watch?v=j-zczJXSxnw
https://www.youtube.com/watch?v=_sBBaNYex3E
https://www.youtube.com/watch?v=1pgm8I0B8bY


Definitions of Stability in the Sense of Lyapunov (i.s.L)

There are various ways to define “well-behaved”.

An equilibrium point x of ẋ = A(t)x is stable i.s.L if, ∀ε > 0,∃δ(t0, ε) > 0 s.t.
||x(t0)− x|| < δ, ||x(t)− x|| < ε,∀t > t0.

If δ = δ(ε) (independent of t0), x is uniformly stable (time invariant).

If ||x(t)− x|| → 0 as t→∞, x is asymptotically stable.

If x is asymptotically stable and ∃δ > 0, γ > 0, λ > 0 s.t.
||x(t)− x|| ≤ γe−λt||x(t0)− x||, x is exponentially stable.
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Recap: Example

ẋ =

[
x1 − x31 + x1x2
−x2 + 2x1x2

]
1. Find equilibria{
x1 − x31 + x1x2 = 0

−x2 + 2x1x2 = 0
⇒ x2(2x1 − 1) = 0⇒ x2 = 0 or x1 = 1

2

x2 = 0⇒ x1(1− x21) = 0⇒ x1 = 0, x1 = 1, x1 = −1⇒ (0, 0), (1, 0), (−1, 0)
x1 = 1

2 ⇒
1
2 −

1
23

+ 1
2x2 = 0⇒ x2 = (−1 + 1

22
)⇒ (12 ,−

3
4) 2. Linearization

∂f

∂x
=

[
1− 3x21 + x2 x1

2x2 2x1 − 1

]
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Recap: Phase Portrait Plot

(0, 0): δ̇x =

[
1 0
0 −1

]
δx

(1, 0): δ̇x =

[
−2 1
0 1

]
δx

(−1, 0): δ̇x =

[
−2 −1
0 −3

]
δx

(12 ,−
3
4): δ̇x =

[
−1

2
1
2

−3
2 0

]
δx
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Stability of CT LTI Systems

Theorem

x̄ for ẋ = Ax is stable⇔

all e-values of A have non-positive real parts, and those with zero real parts are non-defective.

Proof:
For LTI systems, the solution to zero input response is x(t) = eAtx(0). x(0) <∞. If elements
of eAt are finite as t→∞, then the system is stable i.s.L.

Ding Zhao (CMU) M1-5: Stability 9 / 51



Recap: Ways to compute eAt

1 Apply the series definition:
eAt =

∑∞
k=0

Aktk

k!

2 Apply Cayley-Hamilton theorm:
eAt = β0I + β1A+ · · ·+ βn−1A

n−1

3 Use similarity transformations:
eAt = MeJtM−1

4 [New] Inverse Laplace Transformation:
Compute (sI −A)−1, then compute L −1{i, jth element of (sI −A)−1}. Gives i, jth

element of eAt.
ẋ = Ax+ Iu. Assume x(0) = 0, ⇒ sX(s) = AX(s) + IU(s)⇒ X(s) = (sI −A)−1U(s)
If u(t) = δ(t), U(s) = 1. x(t) = L −1((sI −A)−1)
x(t) = eAtx(0) +

∫ t
0 e

A(t−τ)Iδ(τ)dτ = eAt
∫ t
0 e
−τδ(τ)dτ =

eAt(
∫ 0+

0 e−τδ(τ)dτ +
∫ t
0+ e

−τδ(τ)dτ) = eAt
∫ 0+

0 1δ(τ)dτ = eAt

Which one may help to analyze the stability?
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Recap: Similarity Decomposition

Using a similarity transformation, we can convert the state equation into diagonal (or Jordan)
form.

Let x = Mx where M = [v1
...v2

... · · ·
...vn] are the eigenvectors (or generated e-vectors) of A{
ẋ = M−1AMx +M−1Bu
y = CMx +Du

Here J = M−1AM is in either diagonal or Jordan form. In either case, eJt is easier to
computer.
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Recap: Jordan Decomposition In General

Let A be an n× n matrix with eigenvalues λ1, . . . , λn of algebraic multiplicities m1, ...,mp

and geometric multiplicities q1, ..., qp. Then ∃ an invertible matrix M such that
J = M−1AM, where

J =


Ĵ1 0 0 0

0 Ĵ2 0 0

0 0
. . . 0

0 0 0 Ĵp


n×n

#blocks = p(#distinct e-values)

Ĵi =


Ĵi1 0 0 0

0 Ĵi2 0 0

0 0
. . . 0

0 0 0 Ĵiqi


mi×mi

Ĵij =

 λi 1 0

0
. . . 1

0 0 λi


?×?,?≥2

#blocks = qi( #indep e-vectors assoc. with λi) In general, we do not know what is the
dimensions for the 3rd level Jordan blocks except in type I, II1, or II2.
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Recap: Exponential of Jordan Form cont.

Given J =


2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 1

, find etJ

J =

[
J1 0
0 J2

]
⇒ etJ =

[
etJ1 0
0 etJ2

]
J1 = D +N =

 2 0 0
0 2 0
0 0 2

+

 0 1 0
0 0 1
0 0 0


etD =

 e2t 0 0
0 e2t 0
0 0 e2t

. Need to compute etN
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Recap: Exponential of Jordan Form

Apply Cayley-Hamilton theorem:

λ = 0, f(N) = etN , N2 =

 0 1 0
0 0 1
0 0 0

 0 1 0
0 0 1
0 0 0

 =

 0 0 1
0 0 0
0 0 0

 ,
f(λ) = etλ = 1, f ′(λ) = tetλ = t, f ′′(λ) = t2etλ = t2

g(λ) = β2λ
2 + β1λ+ β0 = β0, g

′(λ) = 2β2λ+ β1 = β1, g
′′(λ) = 2β2

f(λ) = g(λ), f ′(λ) = g′(λ), f ′′(λ) = g′′(λ)⇒ β0 = 1, β1 = t, β2 = 1
2 t

2

etN = f(N) = g(N) = 1
2 t

2N2 + tN + I =

 1 t 1
2 t

2

0 1 t
0 0 1



Finally, because DN = ND, etJ1 = et(D+N) = etD · etN =

 e2t te2t 1
2 t

2e2t

0 e2t te2t

0 0 e2t


Ding Zhao (CMU) M1-5: Stability 14 / 51



Recap: Exponential of Jordan Form

eJt =


eλ1t 0 0 · · · 0

0 eλ2t teλ2t · · · 0
0 0 eλ2t · · · 0
...

...
. . .

...


eJt has terms of the form tmeλit, with m 6= 0 for Jordan blocks of order > 1. We will use this
trick again in the stability analysis.
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CT LTI Systems

eJt =


eλ1t 0 0 · · · · · · 0

0 eλ2t teλ2t t2eλ2t · · · 0
0 0 eλ2t teλ2 · · · 0
...

...
. . .

...


eJt has terms of the form tmeλit, with m 6= 0 for Jordan blocks of order > 1. We just need to
make sure

tmeλit all bounded

How to check eλit? Remember λ is a complex number.
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Euler’s Formula

Euler, 1707-1783
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CT LTI Systems

eJt =


eλ1t 0 0 · · · 0

0 eλ2t teλ2t · · · 0
0 0 eλ2t · · · 0
...

...
. . .

...


eJt has terms of the form tmeλit, with m 6= 0 for Jordan blocks of order > 1. We just need to
make sure

tmeλit all bounded

Let λi = Re + Imj, tmeλit can be written as

tmeRet(cos(Imt) + j sin(Imt))
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Stability of CT LTI Systems

Given
tmeRet(cos(Imt) + j sin(Imt)),

consider the following cases:

1 ∀λi , Re < 0 ⇒ Asymptotic stable

2 ∃λi , Re > 0 ⇒ Unstable

3 ∃λi , Re = 0 ,m = 0 ⇒Stable i.s.L.

4 ∃λi , Re = 0 ,m > 0 ⇒ Unstable
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Stability of DT LTI

Theorem

x = 0 for x(k + 1) = Ax(k) is stable ⇔

all eigenvalues of A satisfy |λi| 6 1 and all λi=1 are non-defective

.
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Stability of DT LTI

ẋ(k) = Akx(0) = MJkM−1 = x(0) with J in Jordan form

Jk =


λk1 kλk−11 0 0
0 λk1 0 0
0 ... λk2 ...
0 ... ... ...


Use programming to check it: COLAB LINK
The system is stable ⇔ kmλk is bounded as k →∞.
Write λi = rie

jθi . The system is stable ⇔ kmrki e
jθik = kmrki (cos(θik) + j sin(θik)) is

bounded as k →∞.
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https://colab.research.google.com/drive/1rICSLgGIzPsSyBj5-8WWrBjJ1GM_Ubl6?usp=sharing


Stability of DT LTI

Consider kmrki e
jθik = kmrki (cos(θik) + j sin(θik))

1 ∀λi, ri < 1⇒ Asymptotic Stable

2 ∃λi, ri > 1⇒ Unstable

3 ∃λi, ri = 1 & m = 0⇒ Stable i.s.L.

4 ∃λi, ri = 1 & m > 0⇒ Unstable

Ding Zhao (CMU) M1-5: Stability 22 / 51



Asymptotic Stability of LTI Systems

x̄ = 0 for ẋ = Ax is asymptotically stable ⇔ all eigenvalues have negative real parts. x̄ = 0
for x(k + 1) = Ax(k) is AS ⇔ all eigenvalues of A satisfy |λi| < 1.
Every asymptotically stable LTI system is exponentially stable.
Why?
This follows directly from case from the prior equations.{

limx→∞ t
meRet[cos(Imt+ j sin(Imt)] = 0⇔ u < 0

limk→∞(k)mλki = 0⇔ λi < 1
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Recap: Example

ẋ =

[
x1 − x31 + x1x2
−x2 + 2x1x2

]
1. Find equilibria{
x1 − x31 + x1x2 = 0

−x2 + 2x1x2 = 0
⇒ x2(2x1 − 1) = 0⇒ x2 = 0 or x1 = 1

2

x2 = 0⇒ x1(1− x21) = 0⇒ x1 = 0, x1 = 1, x1 = −1⇒ (0, 0), (1, 0), (−1, 0)
x1 = 1

2 ⇒
1
2 −

1
23

+ 1
2x2 = 0⇒ x2 = (−1 + 1

22
)⇒ (12 ,−

3
4) 2. Linearization

∂f

∂x
=

[
1− 3x21 + x2 x1

2x2 2x1 − 1

]
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Phase Portrait Plot

(0, 0): δ̇x =

[
1 0
0 −1

]
δx

(1, 0): δ̇x =

[
−2 1
0 1

]
δx

(−1, 0): δ̇x =

[
−2 −1
0 −3

]
δx

(12 ,−
3
4): δ̇x =

[
−1

2
1
2

−3
2 0

]
δx
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Example: Driving

F = ma = mp̈ = t2

ṗ = v

p(t)

m
p(0) = v(0) = 0

Which is the state?:
{p, ṗ, p̈}, {ṗ, p̈}, {p, ṗ}, {p}, solve p(t)

Is it stable? How about the discrete version of
the system?
x1 = p , x2 = ṗ, x = [x1, x2]

T

ẋ =

[
0 1
0 0

]
x +

[
0
1/m

]
F

y =
[

1 0
]
x
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The Eigenvalues Tests Cannot be Used on LTV Systems Directly

1 The eigenvalues of A(t) at any instant t do not determine stability.

2 If the eigenvalues of A(t) +AT (t) are always negative, the system is asymptotically stable.

3 If all eigenvalues of A(t) +AT (t) are always positive, the system is unstable.

4 If all eigenvalues of A(t) have negative real parts & ∃V <∞ s.t. ||Ȧ(t)|| < V , the
system is stable. (slowly time varying)

Note: We will not prove these claims.
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Example

[
ẋ1
ẋ2

]
=

[
−1 e2t

0 −1

] [
x1
x2

]
, x1(0) = 1, x2(0) = 2

x2 can be solved directly ⇒ x2(t) = e−tx2(0)

x1 (t) = e−tx1 (0) +

∫ t

0
e−(t−τ)x2 (0)× eτdτ

= e−tx1 (0) + x2 (0)× e−t
∫ t

0
e2τdτ

= e−tx1 (0) + x2 (0)× e−t × 1

2
× e2τ |t0

= e−tx1 (0) +
x2 (0)

2
×
(
et − e−t

)
= e−t ×

(
x1 (0)− x2 (0)

2

)
+
x2 (0)

2
· et = et

⇒ unstable, even though λ1 = λ2 =
−1 are negative ∀ t
- Not slowly time varying

Ding Zhao (CMU) M1-5: Stability 29 / 51



Stabilizability & Detectability

Stabilizability:
A system is stabilizable⇔its uncontrollable modes are Lyapunov stable.
Can use control to stabilize any unstable controllable modes.
Detectability:
A system is detectable ⇔its unobservable modes are Lyapunov stable.
Note: Kalman Decomposition is useful. But blindly applying K-D is risky. We may hide the
unstable states.
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How about the stability of the nonlinear system?

Linearization.
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Lyapunov’s Indirect (1st) Method

Let ẋ = f(x). Linearize the system, we have

The origin is locally Asymptotically Stable if Re(λi) < 0, ∀λi of A

Unstable if Re(λi) > 0 for any λi.
The implication is that we can design controllers for the linearized model & apply them to
the original nonlinear system.

What if Re(λi) = 0⇒ very risky as we have used approximation for linearization (Taylor
expansion).
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Lyapunov’s Direct (2nd) Method - Illustrative Example

-Define an abstract “energy-like” quantity & show that it decreases along the system
trajectories ⇒ stable.

x

m

k

b

⇒ mẍ = −kx− bẋ

Ẋ =

[
0 1

− k
m − b

m

]
X, X = [x, ẋ]T

The energy in the system is V (x, ẋ) = 1
2(mẋ2 + kx2)

- Now look at how the energy changes over time
V̇ (x, ẋ) = mẋẍ+ kxẋ = ẋ(−bẋ− kx) + kxẋ = −bẋ2
⇒ the energy decreases when the system has any positive velocity
⇒ the system must stop
- We now generalize this concept of energy to ”Lyapunov
functions”
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Lyapunov’s Direct (2nd) Method

Positive Definite Functions

A function V (x) is positive (negative) definite in a neighborhood of the origin if V (x) > 0
(V (x) < 0) for all x 6= 0 and x(0) = 0

A function V (x) is positive (negative) semidefinite in a neighborhood of the origin if
V (x) ≥ 0 (V (x) ≤ 0) for all x 6= 0 and x(0) = 0

Theorem

The origin of ẋ = f(x) is stable if

V (x) and its partial derivatives are continuous

V (x) is positive definite

V̇ (x) is negative semidefinite

If V̇ (x) is negative definite ∃V (x) > 0, then the origin is asymptotically stable.
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Example

Decide the stability of the following system

ẋ1 = −x1 − 2x22
ẋ2 = x1x2 − x32

Using V (x) = 1
2x

2
1 + x22

Clearly V (x) > 0, ∀x 6= 0

V̇ (x) = x1ẋ1+2x2ẋ2 = x1(−x1−2x22)+2x2(x1x2−x32) = −x21−2x42 = −x21−2x42 < 0, ∀x 6= 0

Note V (x)→∞ as ||x|| → ∞ ⇒ The origin is globally, uniformly asymptotically Stable.
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DT Systems

All remains the same, except instead of V̇ (x, t) we consider

4V (x, k) = V (x(k + 1))− V (x(k))
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Lyapunov’s Direct (2nd) Method for LTI Systems

Consider V (x) = xTPx for the system ẋ = Ax with P > 0.
Clearly V (x) > 0

V̇ (x) = ẋTPx+ xTPẋ

= (Ax)TPx+ xTP (Ax)

= xTATPx+ xTPAx

= xT (ATP + PA)x

⇒ If ATP + PA < 0(≤ 0), the system is asymptotically

stable(Stable).
Lyapunov equation:
lyap(A,Q)→ ATP + PA = −Q , if Q > 0, asymptotically stable; Q ≥ 0, stable.
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Calculate P

Theorem

The origin of ẋ = Ax is AS ⇔ given a Q > 0, ∃ a unique P > 0 s.t.

ATP + PA = −Q

This can be easily proved by setting P =
∫∞
0 eA

T tQeAtdt
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DT Lyapunov Equation

x(k + 1) = Ax(k)

Assuming V (k) = xT (k)Px(k)
4V = V (k + 1)− V (k)

= xT (k + 1)Px(k + 1)− xT (k)Px(k)

= xTAT (k)PAx(k)− xT (k)Px(k)

⇒4V = xT (k)(ATPA− P )x(k)
The DT Lyapunov equation is given by dlyap(A,Q)→ ATPA− P = −Q
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Summary

For Linear systems, much easier to check e-values than find P .

Direct method is the method for non-linear systems in general

Lyapunov equation is useful in optimal control. We will see later in this class.
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Instability

Just because you cannot find a lyapunov function that satisfies V̇ ≤ 0 does not means
instability.

Theorem

The origin of ẋ = A(t)x is unstable. if ∃V (x, t)

1 V (0, t) = 0, ∀t > t0
2 V (x, t0) > 0 for at least some point close to 0

3 V̇ (x, t) > 0 (Chetaev function)
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Recap: Phase Portrait Plot

(0, 0): δ̇x =

[
1 0
0 −1

]
δx

(1, 0): δ̇x =

[
−2 1
0 1

]
δx

(−1, 0): δ̇x =

[
−2 −1
0 −3

]
δx

(12 ,−
3
4): δ̇x =

[
−1

2
1
2

−3
2 0

]
δx
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Example

Show instability of ẋ =

[
1 0
0 −1

]
x.

Try V (x) = 1
2x

2
1 − 1

2x
2
2. Consider x(t0) =

[
ε
0

]
⇒ V (x(t0)) = ε2 > 0

V̇ (x) = x1ẋ1 − x2ẋ2 = x21 + x22 > 0,∀x1, x2 6= 0⇒ x = 0 is unstable.
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Example

Show instability of ẋ =

[
−2 1
0 1

]
x.

A little bit hard to find a proper V by observation. Try Lyapunov Function. To prove instability, we set
ATP + PA = Q. Let V = xTPx. V̇ = xT (ATP + PA)x = xTQx. If Q positive definite and we can find
V > 0 in some neighborhood of the origin, then the system is unstable.[

−2 0
1 1

] [
a b
b c

]
+

[
a b
b c

] [
−2 1
0 1

]
=

[
4 0
0 4

]
−2a− 2a = 4,−2b+ a+ b = 0, a+ b− 2b = 0, b+ c+ b+ c = 4⇒ a = b = −1, c = 3 Let

V (x) = xT

[
−1 −1
−1 3

]
x = (−x1 − x2)x1 + (−x1 + 3x2)x2 = −x2

1 − 2x1x2 + 3x2
2.

Consider x(t0) =

[
0
ε

]
⇒ V (x(t0)) = 3ε2 > 0

V̇ (x) = −2x1ẋ1 − 2ẋ1x2 − 2x1ẋ2 + 6x2ẋ2 = −2x1(−2x1 + x2)− 2(−2x1 + x2)x2

−2x1x2 + 6x2
2 = 4x2

1 + 4x2
2 > 0,∀x1, x2 6= 0⇒ x = 0 is unstable.
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BIBO & BIBS Stability

An alternative definition of stability that takes into account the forced response
Consider the LTV system

{
ẋ = A(t)x+B(t)u

y = C(t)x+D(t)u

||A(t)|| ≤M , ||B(t)|| ≤ N , ||C(t)|| ≤ O, ||D(t)|| ≤ P
BIBO Stability: An LTV system is BIBO stable if for any u(t), ||u(t)|| ≤M , & for
x(t0) = 0, ∃N(M, t0) <∞ s.t. ||y(t)|| ≤ N, ∀t ≥ t0.
BIBS Stability: An LTV system is BIBS stable if for any u(t), ||u(t)|| ≤M , & for
x(t0) = 0, ∃N(M, t0) <∞ s.t. ||x(t)|| ≤ N, ∀t ≥ t0.
Note:This is NOT the same as Lyapunov stability. A system could be BIBO stable even if not
Lyapunov stable!
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Theorem

Testing BIBO stability can be conveniently using transfer functions in the frequency
domain

Theorem

Let GC(s) = C(sI −A)−1B +D.
A CT LTI system is BIBO stable ⇔ every pole of every GCij have negative real part.
Let GD(s) = C(zI −A)−1B +D.
A DT LTI system is BIBO stable ⇔ every pole of every GDij is inside the unit circle.
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Relationships among Stability Types

Lastly, let’s consider the relationships among stability types

Lyapunov S. BIBO

BIBS

Exponential S.
Asymptotic S.
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Example: BIBO Stable even if not Lyapunov Stable

ẋ =

[
−2 5
0 3

]
x+

[
4
0

]
u

y =
[
7 8

]
x+ 1.5u

Stability i.s.L: λ1 = −2, λ2 = 3⇒ unstable

BIBO Stability:

G(s) =
(s− 3)(s+ 20.67)

(s− 3)(s+ 2)
=
s+ 20.67

s+ 2

⇒ BIBO Stable!.

Note: The minimal realization/Kalman Decomposition cancelled out the unstable poles
with zeros.
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