Module 1-5: Stability Linear Control Systems (2020)

Ding Zhao

Assistant Professor

College of Engineering

School of Computer Science

Carnegie Mellon University

Table of Contents

1 [Definitions of Stability](#page-2-0)

- 2 [Stability of Linear Time Invariant Systems](#page-7-0)
- 3 [Stability of Linear Time Varying Systems](#page-26-0)
- 4 [Stability of Nolinear Systems](#page-30-0)
	- [Lyapunov's Indirect Method](#page-31-0)
	- [Lyapunov's Direct Method](#page-33-0)
- 5 [Instability](#page-41-0)
- 6 [BIBO & BIBS Stability](#page-46-0)

Table of Contents

1 [Definitions of Stability](#page-2-0)

2 [Stability of Linear Time Invariant Systems](#page-7-0)

3 [Stability of Linear Time Varying Systems](#page-26-0)

[Stability of Nolinear Systems](#page-30-0) [Lyapunov's Indirect Method](#page-31-0) **• [Lyapunov's Direct Method](#page-33-0)**

[Instability](#page-41-0)

6 [BIBO & BIBS Stability](#page-46-0)

Stability

Lyapunov 1857-1918 Markov 1856-1922 Chebyshev 1821-1894

Stability is one fundamental dynamic property of a system. Essentially we care about

Does the solution behave well as $t \to \infty$?

Stability only depends on the zero input response at equilibrium points

- CT systems: $\dot{x} = f(\overline{x}, t_0, t) = 0$
- DT systems: $x[k+1] = x[k]$

Examples: [balancing stones,](https://www.youtube.com/watch?v=UqU19dR0bFE) [Tacoma Narrows Bridge,](https://www.youtube.com/watch?v=j-zczJXSxnw) [biped robots,](https://www.youtube.com/watch?v=_sBBaNYex3E) [spinning of cars.](https://www.youtube.com/watch?v=1pgm8I0B8bY)

Definitions of Stability in the Sense of Lyapunov (i.s.L)

There are various ways to define "well-behaved".

- An equilibrium point \bar{x} of $\dot{x} = A(t)x$ is stable i.s.L if, $\forall \epsilon > 0, \exists \delta(t_0, \epsilon) > 0$ s.t. $||x(t_0) - \overline{x}|| < \delta, ||x(t) - \overline{x}|| < \epsilon, \forall t > t_0.$
- **If** $\delta = \delta(\epsilon)$ (independent of t_0), \bar{x} is **uniformly stable** (time invariant).
- If $||x(t) \overline{x}|| \to 0$ as $t \to \infty$, \overline{x} is asymptotically stable.
- **•** If \overline{x} is asymptotically stable and $\exists \delta > 0, \gamma > 0, \lambda > 0$ s.t. $||x(t) - \overline{x}|| < \gamma e^{-\lambda t} ||x(t_0) - \overline{x}||$, \overline{x} is exponentially stable.

Recap: Example

$$
\dot{\mathbf{x}} = \begin{bmatrix} x_1 - x_1^3 + x_1 x_2 \\ -x_2 + 2x_1 x_2 \end{bmatrix}
$$

1. Find equilibria
\n
$$
\begin{cases}\nx_1 - x_1^3 + x_1x_2 = 0 \\
-x_2 + 2x_1x_2 = 0\n\end{cases} \Rightarrow x_2(2x_1 - 1) = 0 \Rightarrow x_2 = 0 \text{ or } x_1 = \frac{1}{2}
$$
\n
$$
x_2 = 0 \Rightarrow x_1(1 - x_1^2) = 0 \Rightarrow x_1 = 0, x_1 = 1, x_1 = -1 \Rightarrow (0, 0), (1, 0), (-1, 0)
$$
\n
$$
x_1 = \frac{1}{2} \Rightarrow \frac{1}{2} - \frac{1}{2^3} + \frac{1}{2}x_2 = 0 \Rightarrow x_2 = (-1 + \frac{1}{2^2}) \Rightarrow (\frac{1}{2}, -\frac{3}{4}) \text{ 2. Linearization}
$$
\n
$$
\frac{\partial f}{\partial \mathbf{x}} = \begin{bmatrix} 1 - 3x_1^2 + x_2 & x_1 \\ 2x_2 & 2x_1 - 1 \end{bmatrix}
$$

Recap: Phase Portrait Plot

$$
(-1,0): \dot{\delta}_{\mathbf{x}} = \begin{bmatrix} -2 & -1 \\ 0 & -3 \end{bmatrix} \delta_{\mathbf{x}}
$$

$$
(\frac{1}{2}, -\frac{3}{4}): \dot{\delta}_{\mathbf{x}} = \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ -\frac{3}{2} & 0 \end{bmatrix} \delta_{\mathbf{x}}
$$

Table of Contents

[Definitions of Stability](#page-2-0)

2 [Stability of Linear Time Invariant Systems](#page-7-0)

³ [Stability of Linear Time Varying Systems](#page-26-0)

[Stability of Nolinear Systems](#page-30-0) [Lyapunov's Indirect Method](#page-31-0)

- **[Lyapunov's Direct Method](#page-33-0)**
- **[Instability](#page-41-0)**

6 [BIBO & BIBS Stability](#page-46-0)

Theorem

 \bar{x} for $\dot{x} = Ax$ is stable \Leftrightarrow

all e-values of A have non-positive real parts, and those with zero real parts are non-defective.

Proof:

For LTI systems, the solution to zero input response is $x(t)=e^{At}x(0).$ $x(0)<\infty.$ If elements of e^{At} are finite as $t\to\infty$, then the system is stable i.s.L.

Recap: Ways to compute e^{At}

- **1** Apply the series definition: $e^{At} = \sum_{k=0}^{\infty} \frac{A^k t^k}{k!}$ k!
- 2 Apply Cayley-Hamilton theorm: $e^{At} = \beta_0 I + \beta_1 A + \cdots + \beta_{n-1} A^{n-1}$
- ³ Use similarity transformations: $e^{At} = Me^{Jt}M^{-1}$
- ⁴ [New] Inverse Laplace Transformation: Compute $(sI-A)^{-1}$, then compute $\mathscr L^{-1}\{i,j^{th}$ element of $(sI-A)^{-1}\}$. Gives i,j^{th} element of e^{At} . $\dot{x} = Ax + Iu$. Assume $x(0) = 0$, $\Rightarrow sX(s) = AX(s) + IU(s) \Rightarrow X(s) = (sI - A)^{-1}U(s)$ If $u(t) = \delta(t)$, $U(s) = 1$. $x(t) = \mathcal{L}^{-1}((sI - A)^{-1})$

$$
x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}I\delta(\tau)d\tau = e^{At}\int_0^t e^{-\tau}\delta(\tau)d\tau =
$$

 $e^{At}(\int_0^{0^+}$ $\int_0^{0^+} e^{-\tau} \delta(\tau) d\tau + \int_0^t e^{-\tau} \delta(\tau) d\tau = e^{At} \int_0^{0^+}$ $\int_0^{0^+} 1 \delta(\tau) d\tau = e^{At}$

Which one may help to analyze the stability?

Ding Zhao (CMU) 10 / 51 Minutes and Minute

Recap: Similarity Decomposition

Using a similarity transformation, we can convert the state equation into diagonal (or Jordan) form.

Let $x = M\mathbf{x}$ where $M = [v_1\dot{;}v_2\dot{;} \cdots\dot{;}v_n]$ are the eigenvectors (or generated e-vectors) of A

$$
\begin{cases} \dot{\mathbf{x}} = M^{-1}AM\mathbf{x} + M^{-1}Bu \\ y = CM\mathbf{x} + Du \end{cases}
$$

Here $J=M^{-1}AM$ is in either diagonal or Jordan form. In either case, e^{Jt} is easier to computer.

Recap: Jordan Decomposition In General

Let A be an $n \times n$ matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$ of algebraic multiplicities m_1, \ldots, m_p and geometric multiplicities $q_1, ..., q_p$. Then \exists an invertible matrix M such that $J = M^{-1}AM$, where

$$
\mathbf{J} = \begin{bmatrix} \hat{\mathbf{J}}_1 & 0 & 0 & 0 \\ 0 & \hat{\mathbf{J}}_2 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & \hat{\mathbf{J}}_p \end{bmatrix}_{n \times n} \# \text{blocks} = p(\text{#distinct e-values})
$$

$$
\hat{\mathbf{J}}_i = \begin{bmatrix} \hat{\mathbf{J}}_{i1} & 0 & 0 & 0 \\ 0 & \hat{\mathbf{J}}_{i2} & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & \hat{\mathbf{J}}_{iq_i} \end{bmatrix}_{m_i \times m_i} \qquad \hat{\mathbf{J}}_{ij} = \begin{bmatrix} \lambda_i & 1 & 0 \\ 0 & \ddots & 1 \\ 0 & 0 & \lambda_i \end{bmatrix}_{? \times ?; ? \ge 2}
$$

#blocks = q_i (#indep e-vectors assoc. with λ_i) In general, we do not know what is the dimensions for the 3rd level Jordan blocks except in type I, H_1 , or H_2 .

Ding Zhao (CMU) 12/51

Recap: Exponential of Jordan Form cont.

Given
$$
J = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}
$$
, find e^{tJ}
\n
$$
J = \begin{bmatrix} J_1 & 0 \\ 0 & J_2 \end{bmatrix} \Rightarrow e^{tJ} = \begin{bmatrix} e^{tJ_1} & 0 \\ 0 & e^{tJ_2} \end{bmatrix}
$$
\n
$$
J_1 = D + N = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}
$$
\n
$$
e^{tD} = \begin{pmatrix} e^{2t} & 0 & 0 \\ 0 & e^{2t} & 0 \\ 0 & 0 & e^{2t} \end{pmatrix}
$$
. Need to compute e^{tN}

Recap: Exponential of Jordan Form

Apply Cayley-Hamilton theorem:

$$
\lambda = 0, f(N) = e^{tN}, N^2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},
$$

\n
$$
f(\lambda) = e^{t\lambda} = 1, f'(\lambda) = te^{t\lambda} = t, f''(\lambda) = t^2e^{t\lambda} = t^2
$$

\n
$$
g(\lambda) = \beta_2\lambda^2 + \beta_1\lambda + \beta_0 = \beta_0, g'(\lambda) = 2\beta_2\lambda + \beta_1 = \beta_1, g''(\lambda) = 2\beta_2
$$

\n
$$
f(\lambda) = g(\lambda), f'(\lambda) = g'(\lambda), f''(\lambda) = g''(\lambda) \Rightarrow \beta_0 = 1, \beta_1 = t, \beta_2 = \frac{1}{2}t^2
$$

\n
$$
e^{tN} = f(N) = g(N) = \frac{1}{2}t^2N^2 + tN + I = \begin{bmatrix} 1 & t & \frac{1}{2}t^2 \\ 0 & 1 & t \\ 0 & 0 & 1 \end{bmatrix}
$$

Finally, because
$$
DN = ND
$$
, $e^{tJ_1} = e^{t(D+N)} = e^{tD} \cdot e^{tN} = \begin{bmatrix} e^{2t} & te^{2t} & \frac{1}{2}t^2e^{2t} \\ 0 & e^{2t} & te^{2t} \\ 0 & 0 & e^{2t} \end{bmatrix}$

Recap: Exponential of Jordan Form

$$
e^{Jt} = \begin{bmatrix} e^{\lambda_1 t} & 0 & 0 & \cdots & 0 \\ 0 & e^{\lambda_2 t} & t e^{\lambda_2 t} & \cdots & 0 \\ 0 & 0 & e^{\lambda_2 t} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \end{bmatrix}
$$

 e^{Jt} has terms of the form $t^me^{\lambda_it}$, with $m\neq 0$ for Jordan blocks of order $>1.$ We will use this trick again in the stability analysis.

CT LTI Systems

$$
e^{Jt} = \begin{bmatrix} e^{\lambda_1 t} & 0 & 0 & \cdots & \cdots & 0 \\ 0 & e^{\lambda_2 t} & te^{\lambda_2 t} & t^2 e^{\lambda_2 t} & \cdots & 0 \\ 0 & 0 & e^{\lambda_2 t} & te^{\lambda_2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \end{bmatrix}
$$

 e^{Jt} has terms of the form $t^me^{\lambda_it}$, with $m\neq 0$ for Jordan blocks of order $>1.$ We just need to make sure

 $t^me^{\lambda_i t}$ all bounded

How to check $e^{\lambda_i t}$? Remember λ is a complex number.

Euler's Formula

Euler, 1707-1783

CT LTI Systems

$$
e^{Jt} = \begin{bmatrix} e^{\lambda_1 t} & 0 & 0 & \cdots & 0 \\ 0 & e^{\lambda_2 t} & t e^{\lambda_2 t} & \cdots & 0 \\ 0 & 0 & e^{\lambda_2 t} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \end{bmatrix}
$$

 e^{Jt} has terms of the form $t^me^{\lambda_it}$, with $m\neq 0$ for Jordan blocks of order $>1.$ We just need to make sure

 $t^me^{\lambda_it}$ all bounded

Let $\lambda_i = R_e + I_m j$, $t^m e^{\lambda_i t}$ can be written as

 $t^m e^{R_e t}(\cos(I_m t) + j\sin(I_m t))$

Stability of CT LTI Systems

Given

$$
t^m e^{R_e t} (\cos(I_m t) + j \sin(I_m t)),
$$

consider the following cases:

 $\mathbf{D} \:\: \forall \lambda_i\; , R_e < 0 \quad \Rightarrow \text{Asymptotic stable}$

 $\quad \exists \lambda_i \ , R_e > 0 \ \ \Rightarrow \textsf{Unstable}$

3 $\exists \lambda_i$, $R_e = 0$, $m = 0$ \Rightarrow Stable i.s.L.

 $\exists \lambda_i\,\,, R_e=0\,\,, m>0\,\,\Rightarrow$ Unstable

Theorem

.

 $\overline{x} = 0$ for $x(k + 1) = Ax(k)$ is stable \Leftrightarrow

all eigenvalues of A satisfy $|\lambda_i| \leqslant 1$ and all $\lambda_i = 1$ are non-defective

Stability of DT LTI

 $\dot{x}(k) = A^k x(0) = MJ^kM^{-1} = x(0)$ with J in Jordan form

$$
J^k = \begin{bmatrix} \lambda_1^k & k\lambda_1^{k-1} & 0 & 0 \\ 0 & \lambda_1^k & 0 & 0 \\ 0 & \ldots & \lambda_2^k & \ldots \\ 0 & \ldots & \ldots & \ldots \end{bmatrix}
$$

Use programming to check it: [COLAB LINK](https://colab.research.google.com/drive/1rICSLgGIzPsSyBj5-8WWrBjJ1GM_Ubl6?usp=sharing) The system is stable $\Leftrightarrow k^m\lambda^k$ is bounded as $k\rightarrow\infty.$ Write $\lambda_i=r_ie^{j\theta_i}.$ The system is stable $\Leftrightarrow k^mr_i^ke^{j\theta_ik}=k^mr_i^k(\cos(\theta_ik)+j\sin(\theta_ik))$ is bounded as $k \to \infty$.

Consider $k^m r_i^k e^{j\theta_i k} = k^m r_i^k (\cos(\theta_i k) + j \sin(\theta_i k))$ $\mathbf{D} \:\: \forall \lambda_i, r_i < 1 \Rightarrow \mathsf{Asymptotic}\; \mathsf{Stable}$

 $\exists \lambda_i, r_i > 1 \Rightarrow \mathsf{Unstable}$

 $\exists \lambda_i, r_i = 1 \& m = 0 \Rightarrow$ Stable i.s.L.

 $\exists \lambda_i, r_i=1 \; \& \; m>0 \Rightarrow \textsf{Unstable}$

Asymptotic Stability of LTI Systems

 $\bar{x}=0$ for $\dot{x}=Ax$ is asymptotically stable \Leftrightarrow all eigenvalues have negative real parts. $\bar{x}=0$ for $x(k+1) = Ax(k)$ is $AS \Leftrightarrow$ all eigenvalues of A satisfy $|\lambda_i| < 1$. Every asymptotically stable LTI system is exponentially stable. Why?

This follows directly from case from the prior equations.

 $\int \lim_{x\to\infty} t^m e^{R_e t} [\cos(I_m t + j \sin(I_m t)] = 0 \Leftrightarrow u < 0$ $\lim_{k \to \infty} (k)^m \lambda_i^k = 0 \Leftrightarrow \lambda_i < 1$

Recap: Example

$$
\dot{\mathbf{x}} = \begin{bmatrix} x_1 - x_1^3 + x_1 x_2 \\ -x_2 + 2x_1 x_2 \end{bmatrix}
$$

1. Find equilibria
\n
$$
\begin{cases}\nx_1 - x_1^3 + x_1x_2 = 0 \\
-x_2 + 2x_1x_2 = 0\n\end{cases} \Rightarrow x_2(2x_1 - 1) = 0 \Rightarrow x_2 = 0 \text{ or } x_1 = \frac{1}{2}
$$
\n
$$
x_2 = 0 \Rightarrow x_1(1 - x_1^2) = 0 \Rightarrow x_1 = 0, x_1 = 1, x_1 = -1 \Rightarrow (0, 0), (1, 0), (-1, 0)
$$
\n
$$
x_1 = \frac{1}{2} \Rightarrow \frac{1}{2} - \frac{1}{2^3} + \frac{1}{2}x_2 = 0 \Rightarrow x_2 = (-1 + \frac{1}{2^2}) \Rightarrow (\frac{1}{2}, -\frac{3}{4}) \text{ 2. Linearization}
$$
\n
$$
\frac{\partial f}{\partial \mathbf{x}} = \begin{bmatrix} 1 - 3x_1^2 + x_2 & x_1 \\ 2x_2 & 2x_1 - 1 \end{bmatrix}
$$

Phase Portrait Plot

$$
(0,0): \dot{\delta}_{\mathbf{x}} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \delta_{\mathbf{x}}
$$

$$
(1,0): \dot{\delta}_{\mathbf{x}} = \begin{bmatrix} -2 & 1 \\ 0 & 1 \end{bmatrix} \delta_{\mathbf{x}}
$$

$$
(-1,0): \dot{\delta}_{\mathbf{x}} = \begin{bmatrix} -2 & -1 \\ 0 & -3 \end{bmatrix} \delta_{\mathbf{x}}
$$

$$
(\frac{1}{2}, -\frac{3}{4}): \dot{\delta}_{\mathbf{x}} = \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ -\frac{3}{2} & 0 \end{bmatrix} \delta_{\mathbf{x}}
$$

Example: Driving

$$
x_1 = p , x_2 = \dot{p}, \mathbf{x} = [x_1, x_2]^T
$$

$$
\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1/m \end{bmatrix} F
$$

$$
\mathbf{y} = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}
$$

Which is the state?: $\{p, \dot{p}, \ddot{p}\}, \{\dot{p}, \ddot{p}\}, \{p, \dot{p}\}, \{p\}, \text{solve } p(t)$

Table of Contents

[Definitions of Stability](#page-2-0)

2 [Stability of Linear Time Invariant Systems](#page-7-0)

3 [Stability of Linear Time Varying Systems](#page-26-0)

[Stability of Nolinear Systems](#page-30-0) [Lyapunov's Indirect Method](#page-31-0) **• [Lyapunov's Direct Method](#page-33-0)**

[Instability](#page-41-0)

6 [BIBO & BIBS Stability](#page-46-0)

- \bullet The eigenvalues of $A(t)$ at any instant t do not determine stability.
- $\bullet\,$ If the eigenvalues of $A(t)+A^T(t)$ are always negative, the system is asymptotically stable.
- \bullet If all eigenvalues of $A(t)+A^T(t)$ are always positive, the system is unstable.
- \bigcirc If all eigenvalues of $A(t)$ have negative real parts & $\exists V < \infty$ s.t. $||\dot{A}(t)|| < V$, the system is stable. (slowly time varying)

Note: We will not prove these claims.

Example

$$
\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -1 & e^{2t} \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, x_1(0) = 1, x_2(0) = 2
$$

\n
$$
x_2 \text{ can be solved directly } \Rightarrow x_2(t) = e^{-t}x_2(0)
$$

\n
$$
x_1(t) = e^{-t}x_1(0) + \int_0^t e^{-(t-\tau)}x_2(0) \times e^{\tau}d\tau
$$

\n
$$
= e^{-t}x_1(0) + x_2(0) \times e^{-t} \int_0^t e^{2\tau}d\tau \Rightarrow \text{unstable, even though } \lambda_1 = \lambda_2 =
$$

\n
$$
= e^{-t}x_1(0) + x_2(0) \times e^{-t} \times \frac{1}{2} \times e^{2\tau} \Big|_0^t \Rightarrow 1 \text{ are negative } \forall t
$$

\n
$$
= e^{-t}x_1(0) + \frac{x_2(0)}{2} \times (e^t - e^{-t})
$$

\n
$$
= e^{-t} \times \left(x_1(0) - \frac{x_2(0)}{2}\right) + \frac{x_2(0)}{2} \cdot e^t = e^t
$$

\n
$$
\lim_{M \to 5} \text{ stability}
$$

\n
$$
= \lim_{M \to 5} \frac{z_{\text{halo}}(\text{CMU})}{2}
$$

Stabilizability:

A system is stabilizable⇔its uncontrollable modes are Lyapunov stable.

Can use control to stabilize any unstable controllable modes.

Detectability:

A system is detectable ⇔its unobservable modes are Lyapunov stable.

Note: Kalman Decomposition is useful. But blindly applying K-D is risky. We may hide the unstable states.

Table of Contents

[Definitions of Stability](#page-2-0)

2 [Stability of Linear Time Invariant Systems](#page-7-0)

3 [Stability of Linear Time Varying Systems](#page-26-0)

4 [Stability of Nolinear Systems](#page-30-0)

- [Lyapunov's Indirect Method](#page-31-0)
- [Lyapunov's Direct Method](#page-33-0)

[Instability](#page-41-0)

6 [BIBO & BIBS Stability](#page-46-0)

How about the stability of the nonlinear system?

Linearization.

Let $\dot{x} = f(x)$. Linearize the system, we have

- The origin is locally Asymptotically Stable if $Re(\lambda_i) < 0$, $\forall \lambda_i$ of A
- Unstable if $Re(\lambda_i)>0$ for any $\lambda_i.$ The implication is that we can design controllers for the linearized model & apply them to the original nonlinear system.
- What if $Re(\lambda_i) = 0 \Rightarrow$ very risky as we have used approximation for linearization (Taylor expansion).

Lyapunov's Direct (2^{nd}) Method - Illustrative Example

-Define an abstract "energy-like" quantity & show that it decreases along the system trajectories \Rightarrow stable.

$$
\begin{aligned}\n\dot{X} &= \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{bmatrix} X, \ X = [x, \dot{x}]^T \\
\end{aligned}
$$
\nThe energy in the system is $V(x, \dot{x}) = \frac{1}{2}(m\dot{x}^2 + kx^2)$ - Now look at how the energy changes over time\n
$$
\dot{V}(x, \dot{x}) = m\dot{x}\ddot{x} + kx\dot{x} = \dot{x}(-b\dot{x} - kx) + kx\dot{x} = -b\dot{x}^2
$$
\n
$$
\Rightarrow \text{ the energy decreases when the system has any positive velocity}\n\Rightarrow \text{ the system must stop}\n\end{aligned}
$$
\n- We now generalize this concept of energy to "Lyapunov functions"

Lyapunov's Direct (2^{nd}) Method

Positive Definite Functions

- A function $V(x)$ is positive (negative) definite in a neighborhood of the origin if $V(x) > 0$ $(V(x) < 0)$ for all $x \neq 0$ and $x(0) = 0$
- A function $V(x)$ is positive (negative) semidefinite in a neighborhood of the origin if $V(x) \ge 0$ $(V(x) \le 0)$ for all $x \ne 0$ and $x(0) = 0$

Theorem

The origin of $\dot{x} = f(x)$ is stable if

- \bullet $V(x)$ and its partial derivatives are continuous
- \bullet $V(x)$ is positive definite
- $\dot{V}(x)$ is negative semidefinite

If $\dot{V}(x)$ is negative definite $\exists V(x) > 0$, then the origin is asymptotically stable.

Example

Decide the stability of the following system

 $\dot{x}_1 = -x_1 - 2x_2^2$ $\dot{x}_2 = x_1 x_2 - x_2^3$ Using $V(x) = \frac{1}{2}x_1^2 + x_2^2$ Clearly $V(x) > 0, \forall x \neq 0$

 $\dot{V}(x) = x_1 \dot{x_1} + 2x_2 \dot{x_2} = x_1(-x_1 - 2x_2^2) + 2x_2(x_1x_2 - x_2^3) = -x_1^2 - 2x_2^4 = -x_1^2 - 2x_2^4 < 0, \forall x \neq 0$

Note $V(x) \to \infty$ as $||x|| \to \infty \Rightarrow$ The origin is globally, uniformly asymptotically Stable.

DT Systems

All remains the same, except instead of $\dot{V}(x,t)$ we consider

$$
\triangle V(x,k) = V(x(k+1)) - V(x(k))
$$

Lyapunov's Direct (2^{nd}) Method for LTI Systems

Consider $V(x) = x^T P x$ for the system $\dot{x} = Ax$ with $P > 0$. Clearly $V(x) > 0$ $\dot{V}(x) = \dot{x}^T P x + x^T P \dot{x}$ $=(Ax)^T P x + x^T P (Ax)$ $= x^T A^T P x + x^T P A x$ $= x^T(A^T P + P A)x$ \Rightarrow If $A^T P + P A < 0 \le 0$), the system is asymptotically stable(Stable). Lyapunov equation: $logp(A, Q) \rightarrow A^T P + P A = -Q$, if $Q > 0$, asymptotically stable; $Q > 0$, stable.

Calculate P

Theorem

The origin of $\dot{x} = Ax$ is $AS \Leftrightarrow$ given a $Q > 0$, \exists a unique $P > 0$ s.t.

$$
A^T P + P A = -Q
$$

This can be easily proved by setting $P = \int_0^\infty e^{A^T t} Q e^{At} dt$

DT Lyapunov Equation

 $x(k + 1) = Ax(k)$

Assuming $V(k) = x^T(k)Px(k)$ $\Delta V = V(k+1) - V(k)$ $= x^T(k+1)Px(k+1) - x^T(k)Px(k)$ $= x^T A^T(k) P A x(k) - x^T(k) P x(k)$ $\Rightarrow \triangle V = x^T(k)(A^T P A - P)x(k)$ The DT Lyapunov equation is given by dlyap $(A, Q) \rightarrow A^T P A - P = -Q$

- \bullet For Linear systems, much easier to check e-values than find P .
- Direct method is the method for non-linear systems in general
- Lyapunov equation is useful in optimal control. We will see later in this class.

Table of Contents

- [Definitions of Stability](#page-2-0)
- 2 [Stability of Linear Time Invariant Systems](#page-7-0)
- **3** [Stability of Linear Time Varying Systems](#page-26-0)
- **[Stability of Nolinear Systems](#page-30-0)** [Lyapunov's Indirect Method](#page-31-0) **• [Lyapunov's Direct Method](#page-33-0)**

5 [Instability](#page-41-0)

[BIBO & BIBS Stability](#page-46-0)

Instability

Just because you cannot find a Ivapunov function that satisfies $\dot{V} \le 0$ does not means instability.

Theorem

The origin of $\dot{x} = A(t)x$ is unstable. if $\exists V(x,t)$

$$
\bullet \ \ V(0,t) = 0, \forall t > t_0
$$

- $2 V(x, t_0) > 0$ for at least some point close to 0
- $\bullet \dot{V}(x,t) > 0$ (Chetaev function)

Recap: Phase Portrait Plot

$$
(-1,0): \dot{\delta}_{\mathbf{x}} = \begin{bmatrix} -2 & -1 \\ 0 & -3 \end{bmatrix} \delta_{\mathbf{x}}
$$

$$
(\frac{1}{2}, -\frac{3}{4}): \dot{\delta}_{\mathbf{x}} = \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ -\frac{3}{2} & 0 \end{bmatrix} \delta_{\mathbf{x}}
$$

Example

• Show instability of
$$
\dot{x} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} x
$$
. \n\nTry $V(x) = \frac{1}{2}x_1^2 - \frac{1}{2}x_2^2$. \nConsider $x(t_0) = \begin{bmatrix} \varepsilon \\ 0 \end{bmatrix} \Rightarrow V(x(t_0)) = \varepsilon^2 > 0$. \n $\dot{V}(x) = x_1 \dot{x}_1 - x_2 \dot{x}_2 = x_1^2 + x_2^2 > 0, \forall x_1, x_2 \neq 0 \Rightarrow x = 0$ is unstable.

Example

Show instability of $\dot{x} = \begin{bmatrix} -2 & 1 \ 0 & 1 \end{bmatrix} x$.

A little bit hard to find a proper V by observation. Try Lyapunov Function. To prove instability, we set $A^TP+PA=Q.$ Let $V=x^TPx.$ $\dot{V}=x^T(A^TP+PA)x=x^TQx.$ If Q positive definite and we can find $V > 0$ in some neighborhood of the origin, then the system is unstable.

$$
\begin{bmatrix} -2 & 0 \ 1 & 1 \end{bmatrix} \begin{bmatrix} a & b \ b & c \end{bmatrix} + \begin{bmatrix} a & b \ b & c \end{bmatrix} \begin{bmatrix} -2 & 1 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 0 \ 0 & 4 \end{bmatrix}
$$

\n
$$
-2a - 2a = 4, -2b + a + b = 0, a + b - 2b = 0, b + c + b + c = 4 \Rightarrow a = b = -1, c = 3 \text{ Let}
$$

\n
$$
V(x) = x^T \begin{bmatrix} -1 & -1 \ -1 & 3 \end{bmatrix} x = (-x_1 - x_2)x_1 + (-x_1 + 3x_2)x_2 = -x_1^2 - 2x_1x_2 + 3x_2^2.
$$

\nConsider $x(t_0) = \begin{bmatrix} 0 \ \varepsilon \end{bmatrix} \Rightarrow V(x(t_0)) = 3\varepsilon^2 > 0$
\n
$$
\dot{V}(x) = -2x_1\dot{x}_1 - 2\dot{x}_1x_2 - 2x_1\dot{x}_2 + 6x_2\dot{x}_2 = -2x_1(-2x_1 + x_2) - 2(-2x_1 + x_2)x_2
$$

\n
$$
-2x_1x_2 + 6x_2^2 = 4x_1^2 + 4x_2^2 > 0, \forall x_1, x_2 \neq 0 \Rightarrow x = 0 \text{ is unstable.}
$$

Table of Contents

- [Definitions of Stability](#page-2-0)
- 2 [Stability of Linear Time Invariant Systems](#page-7-0)
- **3** [Stability of Linear Time Varying Systems](#page-26-0)
- **[Stability of Nolinear Systems](#page-30-0)** [Lyapunov's Indirect Method](#page-31-0) **• [Lyapunov's Direct Method](#page-33-0)**
- **[Instability](#page-41-0)**
- 6 [BIBO & BIBS Stability](#page-46-0)

BIBO & BIBS Stability

An alternative definition of stability that takes into account the forced response Consider the LTV system

$$
\begin{cases}\n\dot{x} = A(t)x + B(t)u \\
y = C(t)x + D(t)u\n\end{cases}
$$

 $||A(t)|| \leq M$, $||B(t)|| \leq N$, $||C(t)|| \leq O$, $||D(t)|| \leq P$ BIBO Stability: An LTV system is BIBO stable if for any $u(t)$, $||u(t)|| \leq M$, & for $x(t_0) = 0, \exists N(M, t_0) < \infty$ s.t. $||y(t)|| < N, \forall t > t_0$. BIBS Stability: An LTV system is BIBS stable if for any $u(t)$, $||u(t)|| \leq M$, & for $x(t_0) = 0, \exists N(M, t_0) < \infty$ s.t. $||x(t)|| \le N, \forall t > t_0$. Note:This is NOT the same as Lyapunov stability. A system could be BIBO stable even if not Lyapunov stable!

Testing BIBO stability can be conveniently using transfer functions in the frequency domain

Theorem

Let $G_C(s) = C(sI - A)^{-1}B + D$.

A CT LTI system is BIBO stable \Leftrightarrow every pole of every $G_{C_{ij}}$ have negative real part. Let $G_D(s) = C(zI - A)^{-1}B + D$.

A DT LTI system is BIBO stable \Leftrightarrow every pole of every $G_{D_{ij}}$ is inside the unit circle.

Relationships among Stability Types

Lastly, let's consider the relationships among stability types

Example: BIBO Stable even if not Lyapunov Stable

$$
\dot{x} = \begin{bmatrix} -2 & 5 \\ 0 & 3 \end{bmatrix} x + \begin{bmatrix} 4 \\ 0 \end{bmatrix} u
$$

$$
y = \begin{bmatrix} 7 & 8 \end{bmatrix} x + 1.5u
$$

• Stability i.s.L: $\lambda_1 = -2, \lambda_2 = 3 \Rightarrow$ unstable

• BIBO Stability:

$$
G(s) = \frac{(s-3)(s+20.67)}{(s-3)(s+2)} = \frac{s+20.67}{s+2}
$$

$$
\Rightarrow \text{BIBO Stable!}.
$$

Note: The minimal realization/Kalman Decomposition cancelled out the unstable poles with zeros.

Ding Zhao (CMU) [M1-5: Stability](#page-0-0) 51 / 51