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Mathemathical Expressions of Linear Time-Invariant Control Systems

Ordinary differential equations
ẋ = f(x,u)
y = g(x,u)

State space equations
ẋ = Ax + Bu
y = Cx + Du

Transfer functions
Y (s)

U(s)
= H(s)
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Feedback Control System

Controller System

Disturbances

u

Measurements

r e y

−

ym
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Review: The Laplace Transform

The Laplace transform of a signal (function) f is the function
F = L (f) defined by

F (s) =

∫ ∞
0

f(t)e−stdt

for those s ∈ C for which the integral converges.
• F is a complex-valued function of complex numbers
• s is called the (complex) frequency variable, with units sec−1; t is called the time variable (in
sec); st is unitless
Common notation convention: lower case letter denotes signal. capital letter denotes its
Laplace transform e.g. U(s) denotes L (u), Vin(s) denotes L (vin), etc.

Laplace, 1749-1827
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Example: Exponential Function

Let’s find Laplace transform of f(t) = eat:

F (s) =

∫ ∞
0

eate−stdt =

∫ ∞
0

e(a−s)tdt =

[
1

a− s
e(a−s)t

]∞
0

=
1

s− a
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Example: Impulse Function

Impulse function/(Dirac) delta function

δ(x) =

{
+∞, x = 0

0, x 6= 0
,

∫ ∞
−∞

δ(x) dx = 1

The Laplace Transformation:

F (s) =

∫ ∞
0−

δ(t)e−stdt = e−st|t=0 = 1
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Linearity

The Laplace transform is linear: lf f and g are any signals, and a is any scalar, we have

L (af) = aF, L (f + g) = F +G

i.e. homogeneity & superposition hold
Example:

L (3δ(t)− 2et) = 3L (δ(t))− 2L (et)

= 3− 2

s− 1

=
3s− 5

s− 1
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Review: Derivative and Integral

Let y be the running derivative of a signal u

y(t) =
du(t)

dt

then
Y (s) = sU(s)

Assume the initial condition u(k)(0) = 0.

Let y be the running integral of a signal u

y(t) =

∫ t

0
u(τ)dτ

then

Y (s) =
1

s
U(s)
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Convolution Systems

Convolution system wlth input u(u(t) = 0, t < 0) and output y:

y(t) =

∫ t

0
h(τ)u(t− τ)dτ =

∫ t

0
h(t− τ)u(τ)dτ

abbreviated: y = h ∗ u
In the frequency domain: Y(s) = H(s)U(s)
• H is the transfer function (TF) of the system
• h is the impulse response of the system
block diagram notation(s):

h
u y

H
u y
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Feedback Control System

Controller C(s) System P (s)

Disturbances W (s)

u

MeasurementsH(s)

r e y

−

ym

Y (s) = P (s)C(s)E(s) = P (s)C(s)(R(s)− Ym(s)) = P (s)C(s)(R(s)−H(s)Y (s))

(1 + P (s)C(s)H(s))Y (s) = P (s)C(s)R(s)

Y (s)

R(s)
=

P (s)C(s)

1 + P (s)C(s)H(s)
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Review: Inverse Laplace Transform

In principle we can recover f from F via

f(t) =
1

2πj

∫ σ+j∞

σ−j∞
F (s)estds

where <s ≥ σ. Note: If u(t) = δ(t), U(s) = L (δ(t)) = 1

y(t) = L −1(H(s) · U(s)) = L −1(H(s) · 1) = L −1(H(s))

H(s) = L (y(t))

Therefore, to learn to TF of a system, we just need to measure the system response of a
impulse input and take the Laplace transformation of the output. We call y(t) the impulse
response of a system, usually denoted as h(t).
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Example: Inverted Pendulum

θ̈ = θ̈g + θ̈x = (g/l) sin θ − (ẍ/l) cos θ

lθ̈ − gθ = −ẍ
G(s) = Θ(s)

X(s) = −s2
ls2−g = −a2s2/g

(s+a)(s−a)

where a =
√
g/l.
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Example: Inverted Pendulum (continued)

If we assume a impulse input, by inverse Laplace transform, we have

θ(t) = L −1(H(s) · 1)

= −a
2

g

s2

(s+ a)(s− a)

= −a
2

g

(
1 +

a2

s2 − a2

)
= −a

2

g

(
1 +
−a/2
s+ a

+
a/2

s− a

)
= −a

2

g
δ(t) +

a3

2g
e−at − a3

2g
eat

It is unstable and will blow up.
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State Space to Transfer Function (SS → TF)

ẋ = Ax + Bu
y = Cx + Du

sX(s) = AX(s) + BU(s)⇒ X(s) = (sI−A)−1BU(s)
Y(s) = CX(s) + DU(s)⇒ Y(s) = (C(sI−A)−1B + D)U

G(s) =
Y(s)

U(s)
= C(sI−A)−1B + D
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Recap: Matrix Inverse

In order to learn similarity transformation, we need review the definition of matrix inverse.
If matrix A is square, and (square) matrix B satisfies

BA = AB = I

then B is called the inverse of A and is denoted as B = A−1 For the inverse to exist, A must
have a nonzero determinant, i.e., A must be non-singular. When this is true, A has a unique
inverse given by

A−1 =
CT

|A|

where C is the matrix formed by the cofactors Cij . The matrix CT is called the adjoint
matrix, Adj(A) . Thus the inverse of a nonsingular matrix is

A−1 = Adj(A)/|A|
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Example (Group Discussion)

ẋ =

 0 1 0
0 0 1
−6 −11 −6

x
(sI−A) =

 s −1 0
0 s −1
6 11 s+ 6

→ ∆(s) = det(sI−A) = s3+6s2+11s+6 = (s+1)(s+2)(s+3)

Co-factor matrix: C =

 s2 + 6s+ 11 −6 −6s
s+ 6 s(s+ 6) −11s− 6

1 s s2


Adjugate: adj(sI−A) = CT =

 s2 + 6s+ 11 s+ 6 1
−6 s(s+ 6) s
−6s −11s− 6 s2


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Example

(sI−A)−1 =
1

∆(s)
adj(sI−A) =

1

(s+ 1)(s+ 2)(s+ 3)

 s2 + 6s+ 11 s+ 6 1
−6 s(s+ 6) s
−6s −11s− 6 s2


G(s) =

Y(s)

U(s)
= C(sI−A)−1B + D
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Definition of Realization

A realization of a transfer function G(s) is any {A,B,C,D} s.t.

G(s) = C(sI −A)−1B +D

If the set exists, G(s) is realizable
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Condition of Realizability: SS → TF

Theorem

G(s) is realizable ⇔ each element of Gij(s) is a proper rational TF.

A transfer function is said to be proper if its relative degree is greater than or equal to 0,
and strictly proper if the relative degree is greater than or equal to 1.
Let G(s) have realization {A,B,C,D}. (sI −A)−1 = adj(sI −A)/∆(s)
Degree of adj(sI −A) ≤ n− 1 and degree of ∆(s) = n
⇒ (sI −A)−1 is a strictly proper rational TF matrix which is a vector space.
⇒ C(sI −A)−1B is also a strictly proper rational.
If D 6= 0, G is proper rational; otherwise, G is strictly proper rational.
Every TF with SS realization has proper/rational entries
If the transfer function of the system is proper, then the system is causal. If the transfer
function of a system has relative degree equal to 0 then there is also instantaneous
transfer between input and output.

Example: the inverted pendulum is not strictly proper. It is a causal system.
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Controllable Canonical Forms for the SISO System

Given a SISO system:

G(s) =
bns

n + · · ·+ b0
sn + an−1sn−1 + · · ·+ a0

the controllable canonical form is given by

ẋ =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .

0 0 0 · · · 1
−a0 −a1 · · · · · · −an−1

x+


0
0
...
0
1

u

y =
[
b0 − bna0 b1 − bna1 · · · bn−1 − bnan−1

]
x+ bnu
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Proof

Let z defined as sz = Az +B. z =
[
z1 z2 . . . zn

]T
= (sI −A)−1B with zi ∈ R.

From the form of A matrix

z2 = sz1, z3 = sz2 = s2z1, · · · , zn = szn−1 = sn−1z1

Now, from the last row of A,
szn = −a0z1 − a1z2 − · · · − an−1zn + 1 = 1−

∑n−1
i=0 aizi+1 = 1−

∑n−1
i=0 ais

iz1

snz1 +
∑n−1

i=0 aisiz1 = 1⇒ z1 = 1/∆(s)⇒ zi+1 = si/∆(s)
G(s) = Cz + bn = bn +

∑n−1
i=0 (bi − bnai)zi+1 = bn +

∑n−1
i=0 (bi − bnai)si/∆(s)

=

∑n−1
i=0 bis

i + bn(∆(s)−
∑n−1

i=0 ais
i)

∆(s)
=

∑n
i=0 bis

i

∆(s)
=

bns
n + · · ·+ b0

sn + an−1sn−1 + · · ·+ a0
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Observable Canonical Form for the SISO System

Given a SISO system:

G(s) =
bns

n + · · ·+ b0
sn + an−1sn−1 + · · ·+ a0

can be converted into the analogous form

ẋ =


−an−1 1 0 · · · 0

... 0 1 · · · 0

...
...

...
. . .

−a1 0 0 · · · 1
−a0 0 · · · · · · 0

x+


bn−1 − bnan−1

...
b1 − bna1

b0 − bna0

u

y =
[
1 0 · · · 0

]
x+ bnu
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Similarity Transformations for Controllable/Observable Canonical Forms

We can get here via a similarity transformation and an observable state space model.

Let Mc = PP−1
c , with Pc the controllability matrix for the system in controllable

canonical form, calculated by Ac and Bc

Let Mo = Q−1Qo, with Qo the observability matrix for the system in observable
canonical form, calculated by Ao and Co

Q−1
o and P−1

c have special forms:

P−1
c =


a1 a2 · · · an−1 1
a2 a3 · · · 1 0
...

...
. . .

... 0

an−1 1 · · · . . .
...

1 0 · · · · · · 0

, Q−1
o =


1 0 · · · 0 0

an−1 1 · · · 0 0
...

...
. . .

...
...

a2 a3 · · · 1 0
a1 a2 · · · an−1 1


These can be written by inspection!
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Realization for MIMO Systems

Theorem

G(s) is realizable ⇔ each element of Gij(s) is a proper rational TF.

Decompose G into a strictly proper TF matrix and a constant matrix:
G(s) = Gsp(s) +D ⇒ D = G(s =∞)

Let ∆(s) = sr + α1s
r−1 + · · ·αr−1s+ αr be the least common denominator for Gsp(s)

⇒ Gsp = 1
∆(s) [N1s

r−1 +N2s
r−2 + · · ·+Nr−1s+Nr]

ẋ = Ax+Bu =


−α1Ip −α2Ip · · · −αr−1Ip −αrIp
Ip 0p · · · 0p 0p
0p Ip · · · 0p 0p
...

...
. . .

...
...

0p 0p · · · Ip 0p

x+


Ip
0p
0p
...

0p

u,
y = Cx+Gu =

[
N1 N2 · · · Nr−1 Nr

]
x+G(∞)u

is a realization for a q × p TF matrix G. u ∈ Rp×1, x ∈ Rrp×1, y ∈ Rq×1, Ni ∈ Rq×p
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Example

Realize

G(s) =

[
4s−10
2s+1

3
s+2

1
(2s+1)(s+2)

s+1
(s+2)2

]

Solution:
Find Gsp:

G(∞) =

[
2 0
0 0

]
⇒ Gsp =

[
−6
s+0.5

3
s+2

0.5
(s+0.5)(s+2)

s+1
(s+2)2

]
d(s) = (s+ 0.5)(s+ 2)2 = s3 + 4.5s2 + 6s+ 2

⇒ Gsp = 1
s3+4.5s2+6s+2

[
−6(s+ 2)2 3(s+ 2)(s+ 0.5)
0.5(s+ 2) (s+ 0.5)(s+ 1)

]
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Example

⇒N1(s) =

[
−6 3
0 1

]
, N2(s) =

[
−24 7.5
0.5 1.5

]
, N3(s) =

[
−24 3

1 0.5

]

⇒A =



−4.5 0 −6 0 −2 0
0 −4.5 0 −6 0 −2
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

 , B =



1 0
0 1
0 0
0 0
0 0
0 0


C =

[
−6 3 −24 7.5 −24 3
0 1 0.5 1.5 1 0.5

]
, D =

[
2 0
0 0

]
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Controllable Decomposition

One way to reduce the redundant states in realization is to use Kalman decomposition. We
will again use Similarity Transformation. Let x = Mx̂

Form the change of basis matrix M whose first nc = r(P ) columns are linearly
independent columns of P and last n− nc columns are arbitrary s.t. r(M) = n

⇒ Â = M−1AM =

[
Ac A12

0 Ac

]
, B̂ = M−1B =

[
Bc
0

]
, Ĉ = CM =

[
Cc Cc

]
⇒ ˙̂xc =

[
Ac A12

0 Ac

] [
x̂c
x̂c

]
+

[
Bc
0

]
u, y =

[
Cc Cc

] [x̂c
x̂c

]
+Du

with Ac ∈ Rnc×nc , Ac ∈ R(n−nc)×(n−nc)

˙̂xc = Acx̂c +Bcu
y = Ccx̂c +Du

is controllable and has the same TF as
ẋ = Ax+Bu
y = Cx+Du
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Transfer Function Claim

G = C(sI −A)−1B +D

=
[
Cc Cc

] [sI −Ac −A12

0 sI −Ac

]−1 [
Bc
0

]
+D

=
[
Cc Cc

] [(sI −Ac)−1 (sI −Ac)−1A12(sI −Ac)−1

0 (sI −Ac)−1

] [
Bc
0

]
+D

= Cc(sI −Ac)−1Bc +D
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Observable Decomposition

We can similarly break into observable, unobservable parts by using M−1 whose first no rows
are linearly independent rows of Q and last n− no rows are arbitrary s.t. r

(
M−1

)
= n

⇒
[

˙̂xo
x̂o

]
=

[
Ao 0
A21 Ao

] [
x̂o
x̂o

]
+

[
Bo
Bo

]
u, y =

[
Co 0

] [x̂o
x̂o

]
+Du

Furthermore,
˙̂xo = Aox̂o +Bou
y = Cox̂o +Du

is observable and has the same TF as the full system.
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Full Decomposition

By applying the controllability decomposition and observability decomposition of each
subsystems, we can arrive at the following:

˙̂xco
˙̂xco
˙̂xco
˙̂xco

 =


Aco 0 A13 0
A21 Aco A23 A24

0 0 Aco 0
0 0 A43 Aco



x̂co
x̂co
x̂co
x̂co

+


Bco
Bco
0
0

u

y =
[
Cco 0 Cco 0

] 
x̂co
x̂co
x̂co
x̂co

+Du

Furthermore,
˙̂xco = Acox̂co +Bcou
y = Ccox̂co +Du

is controllable and observable and has the same TF as

the full system.
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Full Decomposition

There exists a coordinate transformation x̂ = M−1x ∈ Rn such that

˙̂x =


Aco 0 A13 0
A21 Aco A23 A24

0 0 Aco 0
0 0 A43 Aco

 x̂+


Bco
Bco
0
0

u
y =

[
Cco 0 Cco 0

]
x̂+Du

with M = [m1 m2 m3 m4] where

m2 → (co) : Range(P ) ∩Null(Q)⇒ identify m2

m1 → (co) : Range(P ) = m1 ∪m2 ⇒ identify m1 by subtracting m2 from Range(P )

m4 → (co) : Null(Q) = m2 ∪m4 ⇒ identify m4 by subtracting m2 from Null(Q)

m3 → (co) : m1 ∪m2 ∪m3 ∪m4 = basis for Rn ⇒ identify m3 by subtracting
m1,m2,m4 from Rn
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Example of Kalman Decomposition

ẋ =

 2 1 1
5 3 6
−5 −1 −4

x+

1
0
0

u, y =
[
1 1 2

]
x . Do the Kalman full decomposition.

⇒ P =

1 2 4
0 5 −5
0 −5 5


⇒ r(P ) = 2⇒M =

1 2 0
0 5 0
0 −5 1


⇒
[

˙̂xc
˙̂xc

]
=

0 6 −1.4
1 −1 1.2
0 0 2

[x̂c
x̂c

]
+

1
0
0

u, y =
[
1 −3 2

] [x̂c
x̂c

]

Q =

 1 1 2
−3 2 −1
9 4 13

⇒ r(Q) = 2⇒unobservable
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Example of Kalman Decomposition cont.

Let’s look at same test for controllable subsystem

Ac =

[
0 6
1 −1

]
, Cc =

[
1 −3

]
⇒ Qc =

[
1 −3
−3 9

]
⇒ r(Qc) = 1⇒

System has 1 co, 1 co, 1 co mode.

Let M−1 =

[
1 −3
1 0

]
⇒
[

˙̂xco
˙̂xco

]
=

[
−3 0
−2 2

] [
x̂co
x̂co

]
+

[
1
1

]
u, y =

[
1 0

] [x̂co
x̂co

]
⇒ ˙̂xco = −3x̂co + u, y = x̂co
This is the minimal realization of

⇒ G(s) =
1

s+ 3
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Directly Using Full Decomposition

P =

1 2 4
0 5 −5
0 −5 5

 , Q =

 1 1 2
−3 2 −1
9 4 13


R(P ) = span

1
0
0

 ,
 2

5
−5

 = span

1
0
0

 ,
 1

1
−1


Use Gaussian Elimination to get N (Q):

 1 1 2 0
−3 2 −1 0
9 4 13 0

⇒
1 1 2 0

0 5 5 0
0 0 0 0

⇒1 1 2 0
0 1 1 0
0 0 0 0

⇒
1 0 1 0

0 1 1 0
0 0 0 0

⇒ N (Q) = span

 1
1
−1


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Directly Using Full Decomposition

m2 → (co) : Range(P ) ∩Null(Q)⇒ identify m2

m1 → (co) : Range(P ) = m1 ∪m2 ⇒ identify m1 by subtracting m2 from Range(P )

m4 → (co) : Null(Q) = m2 ∪m4 ⇒ identify m4 by subtracting m2 from Null(Q)

m3 → (co) : m1 ∪m2 ∪m3 ∪m4 = basis for Rn ⇒ identify m3 by subtracting
m1,m2,m4 from Rn

R(P ) = span

1
0
0

 ,
 1

1
−1

, N (Q) = span

 1
1
−1


m2 =

 1
1
−1

, m1 =

1
0
0

, m4 = ∅, m3 =

0
1
0

, M =

1 1 0
0 1 1
0 −1 0

, M−1 =

1 0 1
0 0 −1
0 1 1


Â = M−1AM =

−3 0 0
5 2 1
0 0 2

, B̂ = M−1B =

1
0
0

, Ĉ = CM = [1, 0, 1]

⇒ ˙̂xco = −3x̂co + u, y = x̂co
Ding Zhao (CMU) M1-4: Realization 40 / 43



Table of Contents

1 Laplace transformation and transfer functions (background knowledge)

2 State Space to Transfer Function

3 Transfer Function to State Space (Realization)
Controllable Canonical Form
Observable Canonical Form
Realization for MIMO Systems

4 Kalman Decomposition

5 Minimal Realization

Ding Zhao (CMU) M1-4: Realization 41 / 43



Minimal Realization

Minimal realization: the realization with the minimum number of states.

Different realizations of a TF can have a varying number of states

We have already seen with the Kalman decomposition that the
uncontrollable/unobservable states do not affect the TF

The minimal realization is given for the KD by

ẋco = Acoxco +Bcou

y = Ccoxco +Du
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Minimal Realization

Theorem

A realization is minimal ⇔ it is controllable & observable.

Theorem

All minimal realizations of the same transfer function are similar
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