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Controllability & Observability

o Controllability: Kalman, 1930-2016

A system is controllable if Ju(t),t € [to,t1] that transfers the system from any z () to
any z(ty).

Heuristically, can we influence all the states (differently).
o Observability:

A system is observable if knowing u(t),y(t),t € [to, t1] is sufficient to uniquely solve for
Y (to).
Heuristically, can we infer all internal states of a system from the input and output.
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Controllability for DT LTI Systems

We start looking at these for DT systems. The solution of the LTI discrete time system is:

k—1
k] = AFz[0] + ) A1 Bulk]

m=0

.%'[k] c RHX1,A c RnXTL,B c Rnxm7u[k] c Rmx1

ulk — 1] ulk — 1]
L afl] — ARl = (BiAB a1 | N A p | N A p
ul0] ul0]

Let z[k] — A¥2[0] = 2 = Pu = 2,2 € Ry € RF™*1 P ¢ R"*#" We need to make sure
"simultaneous linear equation” Pu = z always have a solution. Fortunately, we have a
theorem on it.
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Solutions of Simultaneous Linear Equations

Consider
Ax=y
where x e R", y ¢ R™ and A = [a, - ,a,] : R" - R™

y =aiz +asxy + - + apz,, W = [Aly]

@ A solution exists:
iff y € Z(A) < r(A) = r(W) < y is linearly dependent on columns of A.

@ A solution does not exist:
iff y € Z(A) < r(A) < r(W) < y is linearly independent on columns of A.

@ A unique solution exists:
iff r(A) = r(W) = n & y is linearly dependent on columns of A and columns of A are
independent

e Multiple (actually infinite) solutions:
iff r(A) =r(W) < n < y is linearly dependent on columns of A and columns of A are
dependent
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Multiple Solutions Case

r(A) =r([Ay]) <n
General solutions:
X = Xp + axy,
where x,, € A (A), i.e. Ax, =0 and x, #0
X, is a particular solution of Ax =y, ie. Ax, =y
« is an arbitrary scalar.
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Check Rank with Gaussian Elimination

Convert the matrix [A:y] to echelon form using Gaussian Elimination
© Convert to an upper triangular matrix.
@ Multiply rows by scalars, interchange rows, and/or add multiples of rows together.

© Rank is the the number of nonzero rows
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Example: Overactuated System

Pu =z P eR™km 4 e RFmX1 5 e R*¥1 |f n < km (a common situation), we will have an
overactuated system. Example:

[A:]fl -1 2 Sél -1 2 8$1 0 4 18
Y= 2 0 2 0 1 2 10 0 1 2 10

x3 is the “free” variable (no pivot in the third column).
Let 3 = 1 and solve for z1, o to find the null space.

1 0 4 0
0 1 2 0
1 +4=0,20+2=0, =221 =—4,29 =2
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Example: Underactuated System Cont.

—4
—21 is a basis for the null space
1

Particular Solution: Let x3 = 0 [Since it is free variable, it doesn't change the solution.]

r1 = 18,%2 =10

18 —4
x= |10 +a -2
0 1
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Controllability for LTI Systems

We start looking at these for DT systems. The solution of the LTI discrete time system is:

k—1
x[k] = AFz[0] + ) A1 Bulk]
m=0
ulk — 1] ulk — 1]
e afl] - APal0) = (BAB A | N A p | N A py
ul0] u[0]

= To reach any state, P = [B:AB:---:A*"1B] € R™*™ must have rank n (for large k).
Let P = [B:AB:---:A""1B] € R"*". Cayley-Hamilton Theorem =

rank(P) = rank(P)
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Test Controllability

Test controllability using rank(P)

A DT LTI system is controllable < rank(P) = n, where

P =[B:AB:...:A"1B]
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Test Observability

We can similarly extend our results to observability.

Test observability using rank(Q)

A DT LTI system is observable < rank(Q)) = n, where
C
CA
Q= :
CAn—l

Note: Controllability and observability are dual aspects of the same problem, e.g. we can test
the observability of a pair (A, C)) by using the controllability tests on the pair (AT, CT).

Ding Zhao (CMU) M1-3: Controllability and Observability 13 /48



Proof

y (k) = CAFz (0) + Yo%~ CAF"™~1 Bu (m) + Du (k)
Let w k] =y (k) — 51 CA*=™=1Bu (m) — Du (k) = CA*z (0]

w [0] C
w 1] CA
S il I R
w [k — 1] CAF-1
w = Qz[0]

w € RFmx1 () ¢ RFmxn  Usually, we have km > n.

To uniquely solve z[0], we need to have rank[Q] = rank[Q'w] =n. CH =k = n
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Summary: Controllability

ulk —2]| Overactuated system m x k > n
: Want to calculate U for arbitrary z (or, if u is
u[0] not unique)
Let W = [Piz]  rank(P) must equal to
z=PU rank(W)
= P need to have full rank, i.e. n independent
columns.
(m x k) = rank(P) =n
I g (m < k) C.H = rank(P) = rank(P), so we need

rank(P) =n

[y
=
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Summary: Observability

w k] =y (k) — B CAF="=1 By (m) — Du (k) € R™*!

: : Underactuated system
w [k —1] cAF! Because wl[k] is calcualted from z[0] via s-s
A equation. We should always have a solution.

w = Q - z[0] X X
. n = rank(|Q:w|) = rank(Q). We need to get
] a unique solution for z[0]. Therefore, require
L rank(Q) =n. C-H = rank(Q) =n
(mx kM= mxk] @ |- |:|"
z[0]
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Controllability & Observability for Continuous Time LTI Systems

Good news! It has the same as formulae as for the DT.

x(t) = Az(t) + Bu(t)
y(t) = Cx(t) + Du(t)

e is controllable < rank(P = [B:AB:---:A""'B]) =n
C
CA
@ is observable < rank(Q = _

CAn—l
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Proof

x(ty) = A u (to) + [t A1) Bu(r) dr

= ftzl AG—TBy (r)dr = z(t1) — eAt1—t) g (1)

C-H: eAlti=7) = STy () AP

= [M AT By (r)dr = [T [0 0 (1) AVB u(r) dr

= ti)l [Anleal (T)u(r) + A" 2Bay, (T)u (1) + - + Bay, (1) u (7_)] dr

t1 11 t1
= A”_lB/ oy (T)u(7)dr +A”‘2B/ ag (T)u(r)dr+---+ B/ ap (T)u () dr
to to to
B1 fg’; é;
Bn
—1 Pn-1 A(t—t
= [B AB - A" B] i =zx(t1) —e ( O)x(to)
B1

To make f; - - - By, solvable for Vz(ty) and z(t1) = r(P) =n
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Example

For what values of R is the system & = Az 4+ Bu uncontrollable and unobservable?

Sl
R 1
W +
Vs IT‘ IT' R
C> [ \l, Vo
Vo(t) o 1T Mg,

Let z1 = Vo and 29 = I,
u=Vs, y=Vo

Ding Zhao (CMU)

_ _ dIy, dIL_l 1
Vo=Vg—Vo=Vs Ldt = 7 —LVS LVC
dVo 1 1
— = —Jo=—(1 In, —1
i~ ole= gt e —Ir)

1 Ve —Veo Vo I, 2Vg Vs

— Sy s—Ve Yoy _ip_fve | Vs

ot =5 R)=C we T

Q‘M

. 2 1
:X:[_RIC 8]X+[Rl
L

V=[-1 0X+1-u

} u, X = Ve, I)"

=
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Example cont.

L 2 .1
P = [B AB] = |:RIC 32021 LC]
L " RLC
To test rank, look at |P| =0
1 1 | L
‘P’ = m — m =0=R= 5 to lose Controllability

o-[6]-[3 4]

r(Q) = 2, VR = always observable
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Controllability /Observability Remains under a Similarity Transforamation

jc:Agc+Bu. Leta:z]\/[@
= Mi=AMZ + Bu= 3= M"1AMz + M 'Bu
= A=M"1AM and B= M~'B

Then
P=[B AB ... A" 'B]
=[M'B M'AMM™'B M 'AMM'AMM™'B -]
=M'P

Because for any A and B: rank(AB) < min(rank(A), rank(B)) . .
rank(P) = rank(M P) < min(rank(M ), rank(P)) = n < min(n,rank(P)) = rank(P) =n
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Popov-Belevitch-Hautus Tests (PBH)

Popov-Belevitch-Hautus Tests-Controllable
An LTI system is uncontrollable < 3 left e-vector v, i.e. v #£ 0, vA = \v for e-value }, s.t.
vB = 0.

Note: Needed later on for Jordan form!

23/48
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Popov-Belevitch-Hautus Tests (PBH)

An LTI system is uncontrollable < Jv # 0, s.t. vA = Ao for left A and vB = 0.
A left eigenvector of A is a vector, s.t. v € C1*", vA = \v.

@ Proof:

S(<«=) :Suppose exists such a v
Then vAB = AB = 0,vA2B = 20B =0,--- ,0A" 'B=X"1wB =0
=v[B AB --- A"1B] =0= r(P) < n = uncontrollable.
N (=) :Assume r(P) < n.
Then Jv e RY>" £ 0 s.t. vP =0
= [vB vAB --- vA"'B] =0.vis a left eigenvector
= [UB B A"‘lvB] =0=vB=0.
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Popov-Belevitch-Hautus Tests (PBH)

Popov-Belevitch-Hautus Tests- Controllable
An LTI system is uncontrollable < J left e-vector v, i.e. v # 0, vA = Av for e-value A, s.t.

vB = 0.

An LTI system is controllable < rank([A\] — A:B]) = n, V) a eigenvalue of A.

25/48
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Popov-Belevitch-Hautus Tests (PBH)

@ Proof:

S(«) (M — A:B]) =n

= There does not exist v # 0 s.t. v|]A\ — A:B] = [v(A] — A):wB] =0
= There does not exist v #0 s.t. vA= XA and vB =0

N (=) :Follows reverse of above
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Popov-Belevitch-Hautus Tests (PBH)

The analogous statement is true for observability.

Popov-Belevitch-Hautus Tests Observability

An LTI system is unobservable < Jv # 0 s.t. Av = Av and Cv = 0.

An LTI system is observable < r ([)\IC_, A]) =n, VA an eigenvalue of A.
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Recap: Controllability & Observability

o Controllability:
A system is controllable if Ju(t),t € [to,t1] that transfers the system from any z(t) to
any z(ty).

@ Observability:
A system is observable if knowing u(t), y(t),t € [to, t1] is sufficient to uniquely solve for
Vl’(to).
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Recap: Test Controllability & Observability

Test controllability using rank(P)

A DT LTI system is controllable < rank(P) = n, where

P =[B:AB:...: A" 1B]

A\

Test observability using rank(Q)
A DT LTI system is observable < rank(Q)) = n, where

C
CA

CAn—l

Controllability and Observability are not changed under a similarity transformation.
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Recap: Popov-Belevitch-Hautus Tests (PBH)

Popov-Belevitch-Hautus Tests: Controllable
An LTI system is uncontrollable & Jv # 0, vA = Av, s.t. vB = 0.

An LTI system is controllable < rank([A\ — A:B]) = n, VX an eigenvalue of A.

Popov-Belevitch-Hautus Tests: Observability
An LTI system is unobservable < Jv # 0 s.t. Av = Av and Cv = 0.

An LTI system is observable < r ([)\15 A]) =n, VA an eigenvalue of A.

| \

5\
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Jordan Form

We can also use the Jordan form J = M 1AM and B = M !B to test the

controllability /observability. Organize the Jordan form s.t. all Jordan blocks with the same

eigenvalues are adjacent.

B A T - AN T
Jii B}

A1 A
qul

A
L Jli\f;p i - Bp(?p -
where ¢; the number of Jordan blocks associated with A; and p the number of distinct

eigenvalues. Now look at the PBH test, i.e. ([\I — J : B]). Note that for blocks with
Xi # Aj, [Ail — J;] has full rank.

Ding Zhao (CMU)
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Example

Check blocks associated with ); , e.g.

A 00 00 0
J=10 x 1| 2% 00 0 1| =r(N—-J)=1
0 0 N 00 0
00 0 B
:[M—J,B}: 00 —1 By
00 0 Bs

= o (- s])—aer (]2

Intuitively, we can pass the influence via the "1" between states, if not, then B needs help

influence different states independently.
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Test Controllability using Jordan Form

Let B be the matrix of rows of B corresponding to the last row of each Jordan block
corresponding to ;. Then an LTI system is controllable < B¢ has full row rank for any \;.

@ For a system with one input channel B is a column vector =-each eigenvalue can only
have 1 Jordan block to be controllable.

10 1 10
0 1] x4+ [J u,J = 0 1 = Not controllable

@ For A with distinct eigenvalues = rows of B just need be non-zero.
. 10 1 10
T = r + u,J = = Not controllable

T =

0 2 0 0 2

34/48
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Test Observability using Jordan Form

Let C*ibe the matrix of columns of C' corresponding to the first columns of each Jordan block
corresponding to ;. Then an LTI system is observable<>C™i has full column rank for any \;

o For a system with one observation channel C is a row vector =-each eigenvalue can only
have 1 Jordan block to be observable.

@ For A with distinct eigenvalues = columns of C just need be non-zero.
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Example

-5 01
-5 1 10

0 -5 11

; 3 5 (202
A= -4 1 =100
0 —4 10

0 0 1

I 1 [0 1]
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Example

B = [(1] ﬂ :>r(B‘5) =2

B=1[2 2

B*=1[1 0

B — [8 ﬂ = (B°) =1 (not controllable)
¢ =[-1 1] =7 (C77) =1 (not observabic)
C? = [-2]

¢t =]

0 = [0 3] (not observable)

modes A = —5, —4, 3 controllable; A = 0 not; modes A = —4, 3 observable; A = —5,0 not
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How Do Computers Calculate Rank

@ Gaussian Elimination is good to manually check the rank. But there is a huge risk to use
computer to blindly do it due to the computational error.

1 10%
Example: The rank of A = 0 1 = rank=2

Calculate rank of A + E where E (computational error) = [ 0 O]

10719 0
1 10
r( [10—10 1
@ We need a method that not only tells us whether a matrix is defective or not but also
assess how close it is to be defective. = Singular Value Decomposition (SVD)

]) = 1 = rank=1, which means A is very close to a defective matrix!
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Singular Value Decomposition

VA € R(™*") we can do the Singular Value Decomposition s.t.
T

A=UxVT=| wy -+ w - um 0 Vi e Ve e Vn

UeR™™ ¥ e R™"™" V e R"™™ A few nice features:

It is canonical/fixed decomposition (compared to Jordan form). No ambiguity

°

@ It can apply ANY matrix (similarity decomposition only applies to square matrix)

@ o; are all positive real number: 01 > 09 > 03--- > 0, > 0. Good to measure a degree,
e.g. defectiveness.

o ATAv, = afvi, AATy; = afui u; = v; are the e-vectors of AT A, u; are the e-vectors
of AAT. They share the same e-values o2

o VZ-ij:{ (1) i;j : uiTuj:{ (1) z;j = UTU=VTV =1
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How Does Singular Values Deal with Numerical Issues

1 1010

The rank of A = [0 1

] = rank=2

1 100
10710 1
Check the singular values of A
o1(A) =10, g9(A) ~ 10710,

We can see that the smallest sigular value is already very close to 0, which robustly implies the
matrix is close to be defective.

Calculate rank of A + E = [ 10-10 ¢

] where E = [ 0 O] = rank=1
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Symmetric Matrix

In order to learn SVD, we need to under understand positive definite and positive definite.

Given A real, it is a symmetric matrix: AT = A. Symmetric matrices have very nice features:
@ All its eigenvalues are real

(VEAV)H =vHAHy = v ATy = vH Av

H)H H

vEAv = v ) v = \vlly,
(viv)" =viy

Both v Av and A\vv are real, \ is real.
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Symmetric Matrix (cont.)

Given A real, it is a symmetric matrix: AT = A.

@ A has n orthogonal eigenvectors
Let \q 751X2,fX¥71 = \1vy,
= Avy = \avy. Multiply vI on both side = vl Av; = Alvgvl
Take transpose V1 TATyy = )\2V2 vi. Since A is symmetrlc vi TAvy = )\gv2 Vi
= Vi )\2V2 = )\1V2 Vi, ()\1 — )\2>V1 Vo = 0,)\1 ?é )\2 = Vl vy =0

o Let M = [vy,---,Vy], where v; are normalized e-vectors (orthonormal e-vectors), i.e.
[Villa=1=MM=1, M =M~! = A =MAM~! = MAMT,
where A is diagonal with real values and columns of M are orthogonal.

Great! Now we just need to construct a symmetric matrix related A to help us to get these

nice features. The easiest one is AT Al Actually it is a special type of symmetric matrix:
positive definite matrix!
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Positive Definiteness

e A symmetric matrix P is positive definite if for ¥x # 0, x/ Px > 0.
Every eigenvalue of P is positive

x"Px = xTMPM”x = (MTx)"P(MTx) = 2" Pz = 3" \;iz2 > 0
where z = MT'x
e A symmetric matrix P is positive semi-definite if for ¥x # 0, x/ Px > 0.
Every eigenvalue of P is nonnegative
AT A is positive semi-definite, because
o Symmetric: (ATA)T = ATA
o x"ATAx = (Ax)T(Ax) >0

Similarly, AAT is positive semi-definite too.
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Derivation

—— Viv=1
P
Ty, = {nv;-n =1 i=j
: 0, i#j

J

T 2T
v, ATAV, = o, v, v, = ar

i :

Av; Av,
A || = o, ]:“)u L R ——
' 1AW

| ol

Hﬁﬂi‘: o; a8

oy 2y = g .

u; normalized

ATA semidefinite (therefore symmetric)
2
C——— > AATAv, =0/ Av,

2
ATAv, = av,

a; =01 o B
=4, v = vank({A) < munim, n}

Ty e tly = 0 @
A, -
Defineu, = o Li=1 r I:> AAT“‘ =y
Av, = ou, |AAT symmetric

Ve

u; are orthonormal e-vectors ofAA™

arbitrary orthonormal basis ilR™, use G-S

I oy

Ve |[_|wy o ouw o um o —UE

A =UEv’

AAT =UZVVZ'UT = UZU" = U

Ding Zhao (CM

0 |y ATA = VEUTUETVT = vEVT = V|

oy
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Gram-Schmidt Process

Given a basis {y1, ..., yn} find a new basis {vy,...,v,,} that is orthonormal and is a basis for
span {y1,...,¥n}-

Q Generally: v =y — > i=1 Tl Vi
@ Normalize {vy,...,v,} as {”z;”, ||ng ey IIXHH} to obtain an orthonormal set.
n
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Example

1
3 x 3 example: Let vi=y1=| 0 | . Applying Gram-schmidt process,
Consider 0
0
1 2 3 Vo =Yyo — <V17y2>V1: 1
2
0[0|1 < > ( 0
Y1 ¥Y2 ¥3 V3 =y3 — V1,yg V] — VQ’y§>V2— 0
[[vall [[vall 1
11010
Consider orthornormal basis Q = | o7 ™2 Ter | = 0110 Let A = QR
oL Ivall el vsll | T olol1 -
q1 92 g3
1 2 3
R=Q'!A=|011
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QR Decomposition

Orthornormal basis spanning A = {y1, ...
can be computed using Gram-Schmidt process

,¥n} The y;s can be expressed over the newly
computed orthonormal basis as

=Y q1 = Hzi” Y1 = <Cl1,Y1> q1
=Y2 - <ﬁ"1,"‘ﬂ§>v q2 = szll y2 = (a1, y2) q1 + (d2,y2) 92
V3 = y3 — <ﬁ"1,m§>v1 — <ﬁ’j;>|'|§> Vo Q3 = Hzgll y3 = {(q1,¥3) a1 + (a2, ¥3) 92 + (a3, y3) 3
' - k=1 (vj,¥k) _
Vi =Yk~ o1 ol W = [y i
Z qQj,Yk) q

This can be written in matrix form as A = QR Where

(1,y1) 2(11,}’2; 2%&’35
O ) bl
Q=la @l R=| o 57 g
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Recap: Test Controllability & Observability using Jordan Form

Let B be the matrix of rows of B corresponding to the last row of each Jordan block
corresponding to ;. Then an LTI system is controllable < B¢ has full row rank for any \;.

Let C*ibe the matrix of columns of C' corresponding to the first columns of each Jordan block
corresponding to \;. Then a LTI system is observable<>Ci has full column rank for any A;
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