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Controllability & Observability

Controllability:
A system is controllable if ∃u(t), t ∈ [t0, t1] that transfers the system from any x(t0) to
any x(t1).
Heuristically, can we influence all the states (differently).

Observability:
A system is observable if knowing u(t), y(t), t ∈ [t0, t1] is sufficient to uniquely solve for
∀x(t0).
Heuristically, can we infer all internal states of a system from the input and output.

Kalman, 1930-2016
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Controllability for DT LTI Systems

We start looking at these for DT systems. The solution of the LTI discrete time system is:

x[k] = Akx[0] +

k−1∑
m=0

Ak−m−1Bu[k]

x[k] ∈ Rn×1, A ∈ Rn×n, B ∈ Rn×m, u[k] ∈ Rm×1.

⇒ x[k]−Akx[0] = [B
...AB

... · · ·
...Ak−1B]


u[k − 1]
u[k − 2]

...
u[0]

 = P̂


u[k − 1]
u[k − 2]

...
u[0]

 = P̂ u

Let x[k]−Akx[0] = z ⇒ P̂ u = z, z ∈ Rn×1, u ∈ Rkm×1, P̂ ∈ Rn×km. We need to make sure
”simultaneous linear equation” P̂ u = z always have a solution. Fortunately, we have a
theorem on it.
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Solutions of Simultaneous Linear Equations

Consider
Ax = y

where x ∈ Rn, y ∈ Rm and A = [a1, · · · ,an] : Rn → Rm

y = a1x1 + a2x2 + · · ·+ anxn,W = [A
...y]

A solution exists:
iff y ∈ R(A)⇔ r(A) = r(W)⇔ y is linearly dependent on columns of A.
A solution does not exist:
iff y 6∈ R(A)⇔ r(A) < r(W)⇔ y is linearly independent on columns of A.
A unique solution exists:
iff r(A) = r(W) = n⇔ y is linearly dependent on columns of A and columns of A are
independent
Multiple (actually infinite) solutions:
iff r(A) = r(W) < n⇔ y is linearly dependent on columns of A and columns of A are
dependent
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Multiple Solutions Case

Ax = y

r(A) = r([A
...y]) < n

General solutions:
x = xp + αxn

where xn ∈ N (A), i.e. Axn = 0 and xn 6= 0
xp is a particular solution of Ax = y, i.e. Axp = y
α is an arbitrary scalar.

Ding Zhao (CMU) M1-3: Controllability and Observability 7 / 48



Check Rank with Gaussian Elimination

Convert the matrix [A
...y] to echelon form using Gaussian Elimination

1 Convert to an upper triangular matrix.

2 Multiply rows by scalars, interchange rows, and/or add multiples of rows together.

3 Rank is the the number of nonzero rows
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Example: Overactuated System

P̂ u = z, P̂ ∈ Rn×km, u ∈ Rkm×1, z ∈ Rn×1. If n < km (a common situation), we will have an
overactuated system. Example:[

1 −1 2
−1 2 0

]
x =

[
8
2

]

[A
...y] =

[
1 −1 2 8
−1 2 0 2

]
⇒
[
1 −1 2 8
0 1 2 10

]
⇒
[
1 0 4 18
0 1 2 10

]
x3 is the “free” variable (no pivot in the third column).
Let x3 = 1 and solve for x1, x2 to find the null space.[

1 0 4 0
0 1 2 0

]
x1 + 4 = 0, x2 + 2 = 0, ⇒ x1 = −4, x2 = −2
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Example: Underactuated System Cont.

−4
−2
1

 is a basis for the null space

Particular Solution: Let x3 = 0 [Since it is free variable, it doesn’t change the solution.]

x1 = 18, x2 = 10

x =

18
10
0

+ α

−4
−2
1
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Controllability for LTI Systems

We start looking at these for DT systems. The solution of the LTI discrete time system is:

x[k] = Akx[0] +

k−1∑
m=0

Ak−m−1Bu[k]

⇒ x[k]−Akx[0] = [B
...AB

... · · ·
...Ak−1B]


u[k − 1]
u[k − 2]

...
u[0]

 = P̂


u[k − 1]
u[k − 2]

...
u[0]

 = P̂U

⇒ To reach any state, P̂ = [B
...AB

... · · ·
...Ak−1B] ∈ Rn×km must have rank n (for large k).

Let P = [B
...AB

... · · ·
...An−1B] ∈ Rn×n. Cayley-Hamilton Theorem ⇒

rank(P ) = rank(P̂ )
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Test Controllability

Test controllability using rank(P )

A DT LTI system is controllable ⇔ rank(P ) = n, where

P = [B
...AB

... · · ·
...An−1B]
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Test Observability

We can similarly extend our results to observability.

Test observability using rank(Q)

A DT LTI system is observable ⇔ rank(Q) = n, where

Q =


C
CA

...
CAn−1


Note: Controllability and observability are dual aspects of the same problem, e.g. we can test
the observability of a pair (A,C) by using the controllability tests on the pair (AT , CT ).
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Proof

y (k) = CAkx (0) +
∑k−1

m=0CA
k−m−1Bu (m) +Du (k)

Let w [k] = y (k)−
∑k−1

m=0CA
k−m−1Bu (m)−Du (k) = CAkx [0]

w [0]
w [1]

...
w [k − 1]

 =


C
CA

...
CAk−1

x [0]

w = Q̂x[0]

w ∈ Rkm×1, Q̂ ∈ Rkm×n. Usually, we have km > n.

To uniquely solve x[0], we need to have rank[Q̂] = rank[Q̂
...w] = n. C-H ⇒ k → n
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Summary: Controllability

x[k]−Akx[0] = [B
...AB

... · · ·
...Ak−1B]


u[k − 1]
u[k − 2]

...
u[0]


z = P̂U

z =

U

P̂

1

n n

(m× k) (m× k)

1

·

Overactuated system m× k > n
Want to calculate U for arbitrary z (or, if u is
not unique)

Let W = [P̂
...z] rank(P̂ ) must equal to

rank(W )
⇒ P̂ need to have full rank, i.e. n independent
columns.
⇒ rank(P̂ ) = n
C.H ⇒ rank(P̂ ) = rank(P ), so we need
rank(P ) = n
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Summary: Observability

w [k] = y (k)−
∑k−1

m=0CA
k−m−1Bu (m)−Du (k) ∈ Rm×1

w [0]
w [1]

...
w [k − 1]

 =


C
CA

...
CAk−1

x [0]

w = Q̂ · x[0]

w= Q̂

1

(m× k)

n

1

·(m× k) n

x[0]

Underactuated system
Because w[k] is calcualted from x[0] via s-s
equation. We should always have a solution.

⇒ rank(

[
Q̂

...w

]
) = rank(Q̂). We need to get

a unique solution for x[0]. Therefore, require
rank(Q̂) = n. C-H ⇒ rank(Q) = n
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Controllability & Observability for Continuous Time LTI Systems

Good news! It has the same as formulae as for the DT.{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

is controllable ⇔ rank(P = [B
...AB

... · · ·
...An−1B]) = n

is observable ⇔ rank(Q =


C
CA

...
CAn−1

) = n
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Proof

x (t1) = eA(t1−t0)x (t0) +
∫ t1
t0
eA(t1−τ)Bu (τ) dτ

⇒
∫ t1
t0
eA(t1−τ)Bu (τ) dτ = x (t1)− eA(t1−t0)x (t0)

C-H: eA(t1−τ) =
∑n

i=1 αi (τ)An−i

⇒
∫ t1
t0
eA(t1−τ)Bu (τ) dτ =

∫ t1
t0

[∑n
i=1 αi (τ)An−iB

]
u (τ) dτ

=
∫ t1
t0

[
An−1Bα1 (τ)u (τ) +An−2Bα2 (τ)u (τ) + · · ·+Bαn (τ)u (τ)

]
dτ

= An−1B

∫ t1

t0

α1 (τ)u (τ) dτ︸ ︷︷ ︸
β1

+An−2B

∫ t1

t0

α2 (τ)u (τ) dτ︸ ︷︷ ︸
β2

+ · · ·+B

∫ t1

t0

αn (τ)u (τ) dτ︸ ︷︷ ︸
βn

=
[
B AB · · · An−1B

]

βn
βn−1

...
β1

 = x(t1)− eA(t−t0)x(t0)

To make β1 · · ·βn solvable for ∀x(t0) and x(t1)⇒ r(P ) = n
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Example

For what values of R is the system ẋ = Ax+Bu uncontrollable and unobservable?

R

C
VS -+

VC(t)IC

IR1

N1

L
IL

R
VO
IR2

+

-

Let x1 = VC and x2 = IL
u = VS , y = VO

VC = VS − VO = VS − L
dIL
dt
⇒ dIL

dt
=

1

L
VS −

1

L
VC

dVC
dt

=
1

C
IC =

1

C
(IL + IR2 − IR1)

=
1

C
(IL +

VS − VC
R

− VC
R

) =
IL
C
− 2VC
RC

+
VS
RC

⇒Ẋ =

[
− 2
RC

1
C

− 1
L 0

]
X +

[
1
RC
1
L

]
u,X = [VC , IL]T

Y =
[
−1 0

]
X + 1 · u
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Example cont.

P =
[
B AB

]
=

[
1
RC − 2

R2C2 + 1
LC

1
L − 1

RLC

]
To test rank, look at |P | = 0

|P | = 1

R2LC2
− 1

L2C
= 0⇒ R =

√
L

C
to lose controllability

Q =

[
C
CA

]
=

[
−1 0
2
RC − 1

C

]
r(Q) = 2, ∀R⇒ always observable
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Controllability/Observability Remains under a Similarity Transforamation

ẋ = Ax+Bu. Let x = Mx̂
⇒M ˙̂x = AMx̂+Bu⇒ ˙̂x = M−1AMx̂+M−1Bu
⇒ Â = M−1AM and B̂ = M−1B
Then

P̃ =
[
B̂ ÂB̂ · · · Ân−1B̂

]
=
[
M−1B M−1AMM−1B M−1AMM−1AMM−1B · · ·

]
= M−1P

Because for any A and B: rank(AB) ≤ min(rank(A), rank(B))
rank(P ) = rank(MP̃ ) ≤ min(rank(M), rank(P̃ ))⇒ n ≤ min(n, rank(P̃ ))⇒ rank(P̃ ) = n

Ding Zhao (CMU) M1-3: Controllability and Observability 21 / 48



Table of Contents

1 Controllability & Observability Matrices
Solutions of Simultaneous Linear Equations

2 Popov-Belevitch-Hautus Tests

3 Jordan Form Tests
Singular Value Decomposition
Gram-Schmidt Process
QR Decomposition

Ding Zhao (CMU) M1-3: Controllability and Observability 22 / 48



Popov-Belevitch-Hautus Tests (PBH)

Popov-Belevitch-Hautus Tests-Controllable

An LTI system is uncontrollable ⇔ ∃ left e-vector v, i.e. v 6= 0, vA = λv for e-value λ, s.t.
vB = 0.

Note: Needed later on for Jordan form!
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Popov-Belevitch-Hautus Tests (PBH)

An LTI system is uncontrollable ⇔ ∃v 6= 0, s.t. vA = λv for left λ and vB = 0.
A left eigenvector of A is a vector, s.t. v ∈ C1×n, vA = λv.

Proof:

S(⇐) :Suppose exists such a v

Then vAB = λvB = 0, vA2B = λ2vB = 0, · · · , vAn−1B = λn−1vB = 0

⇒ v
[
B AB · · · An−1B

]
= 0⇒ r(P ) < n⇒ uncontrollable.

N(⇒) :Assume r(P ) < n.

Then ∃v ∈ R1×n 6= 0 s.t. vP = 0

⇒
[
vB vAB · · · vAn−1B

]
= 0.v is a left eigenvector

⇒
[
vB λvB · · · λn−1vB

]
= 0⇒ vB = 0.
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Popov-Belevitch-Hautus Tests (PBH)

Popov-Belevitch-Hautus Tests- Controllable

An LTI system is uncontrollable ⇔ ∃ left e-vector v, i.e. v 6= 0, vA = λv for e-value λ, s.t.
vB = 0.

An LTI system is controllable ⇔ rank([λI −A
...B]) = n, ∀λ a eigenvalue of A.
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Popov-Belevitch-Hautus Tests (PBH)

Proof:

S(⇐) :r([λI −A
...B]) = n

⇒ There does not exist v 6= 0 s.t. v[λI −A
...B] = [v(λI −A)

...vB] = 0

⇒ There does not exist v 6= 0 s.t. vA = λA and vB = 0

N(⇒) :Follows reverse of above
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Popov-Belevitch-Hautus Tests (PBH)

The analogous statement is true for observability.

Popov-Belevitch-Hautus Tests Observability

An LTI system is unobservable ⇔ ∃v 6= 0 s.t. Av = λv and Cv = 0.

An LTI system is observable ⇔ r

([
λI −A
C

])
= n, ∀λ an eigenvalue of A.
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Recap: Controllability & Observability

Controllability:
A system is controllable if ∃u(t), t ∈ [t0, t1] that transfers the system from any x(t0) to
any x(t1).

Observability:
A system is observable if knowing u(t), y(t), t ∈ [t0, t1] is sufficient to uniquely solve for
∀x(t0).
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Recap: Test Controllability & Observability

Test controllability using rank(P )

A DT LTI system is controllable ⇔ rank(P ) = n, where

P = [B
...AB

... · · ·
...An−1B]

Test observability using rank(Q)

A DT LTI system is observable ⇔ rank(Q) = n, where

Q =


C
CA

...
CAn−1


Controllability and Observability are not changed under a similarity transformation.
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Recap: Popov-Belevitch-Hautus Tests (PBH)

Popov-Belevitch-Hautus Tests: Controllable

An LTI system is uncontrollable ⇔ ∃v 6= 0, vA = λv, s.t. vB = 0.

An LTI system is controllable ⇔ rank([λI −A
...B]) = n, ∀λ an eigenvalue of A.

Popov-Belevitch-Hautus Tests: Observability

An LTI system is unobservable ⇔ ∃v 6= 0 s.t. Av = λv and Cv = 0.

An LTI system is observable ⇔ r

([
λI −A
C

])
= n, ∀λ an eigenvalue of A.
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Jordan Form

We can also use the Jordan form J = M−1AM and B̂ = M−1B to test the
controllability/observability. Organize the Jordan form s.t. all Jordan blocks with the same
eigenvalues are adjacent.

J =



Jλ111
. . .

Jλ11q1
. . .

J
λp
p1

. . .

J
λp
pqp


, B̂ =



B̂λ1
11
...

B̂λ1
1q1

B̂
λp
p1
...

B̂
λp
pqp


where qi the number of Jordan blocks associated with λi and p the number of distinct

eigenvalues. Now look at the PBH test, i.e. r([λI − J
... B]). Note that for blocks with

λi 6= λj , [λiI − Jj ] has full rank.
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Example

Check blocks associated with λi , e.g.

J =

λi 0 0
0 λi 1
0 0 λi

 λiI−J−−−−→

0 0 0
0 0 −1
0 0 0

⇒ r (λiI − J) = 1

⇒
[
λI − J, B̂

]
=

0 0 0 B̂1

0 0 −1 B̂2

0 0 0 B̂3


=⇒ for r

([
λI − J, B̂

])
= 3⇔ r

([
B̂1

B̂3

])
= 2

Intuitively, we can pass the influence via the ”1” between states, if not, then B needs help
influence different states independently.

Ding Zhao (CMU) M1-3: Controllability and Observability 33 / 48



Test Controllability using Jordan Form

Theorem

Let B̂λibe the matrix of rows of B̂ corresponding to the last row of each Jordan block
corresponding to λi. Then an LTI system is controllable ⇔ B̂λi has full row rank for any λi.

For a system with one input channel B̂ is a column vector ⇒each eigenvalue can only
have 1 Jordan block to be controllable.

ẋ =

[
1 0
0 1

]
x+

[
1
1

]
u, J =

[
1 0
0 1

]
⇒ Not controllable

For A with distinct eigenvalues ⇒ rows of B̂ just need be non-zero.

ẋ =

[
1 0
0 2

]
x+

[
1
0

]
u, J =

[
1 0
0 2

]
⇒ Not controllable
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Test Observability using Jordan Form

Theorem

Let Ĉλibe the matrix of columns of Ĉ corresponding to the first columns of each Jordan block
corresponding to λi. Then an LTI system is observable⇔Ĉλi has full column rank for any λi

For a system with one observation channel Ĉ is a row vector ⇒each eigenvalue can only
have 1 Jordan block to be observable.

For A with distinct eigenvalues ⇒ columns of Ĉ just need be non-zero.
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Example

Â =



−5
−5 1
0 −5

3
−4 1
0 −4

0
0


, B̂ =



0 1
1 0
1 1
2 2
0 0
1 0
0 1
0 1


Ĉ =

[
−1 1 −1 −2 1 0 0 3

]
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Example

B̂−5 =

[
0 1
1 1

]
⇒ r

(
B̂−5

)
= 2

B̂3 =
[
2 2

]
B̂−4 =

[
1 0

]
B̂0 =

[
0 1
0 1

]
⇒ r

(
B̂0
)

= 1 (not controllable)

Ĉ−5 =
[
−1 1

]
=⇒ r

(
Ĉ−5

)
= 1 (not observable)

Ĉ3 =
[
−2
]

Ĉ−4 =
[
1
]

Ĉ0 =
[
0 3

]
(not observable)

modes λ = −5,−4, 3 controllable; λ = 0 not; modes λ = −4, 3 observable; λ = −5, 0 not
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How Do Computers Calculate Rank

Gaussian Elimination is good to manually check the rank. But there is a huge risk to use
computer to blindly do it due to the computational error.

Example: The rank of A =

[
1 1010

0 1

]
⇒ rank=2

Calculate rank of A + E where E (computational error) =

[
0 0

10−10 0

]
r(

[
1 1010

10−10 1

]
) = 1⇒ rank=1, which means A is very close to a defective matrix!

We need a method that not only tells us whether a matrix is defective or not but also
assess how close it is to be defective. ⇒ Singular Value Decomposition (SVD)
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Singular Value Decomposition

∀A ∈ R(m×n) we can do the Singular Value Decomposition s.t.

A = UΣVT =

 u1 · · · ur · · · um




σ1

. . . 0
σr

0 0


 v1 · · · vr · · · vn


T

U ∈ Rm×m,Σ ∈ Rm×n,V ∈ Rn×n A few nice features:

It is canonical/fixed decomposition (compared to Jordan form). No ambiguity
It can apply ANY matrix (similarity decomposition only applies to square matrix)
σi are all positive real number: σ1 ≥ σ2 ≥ σ3 · · · ≥ σr ≥ 0. Good to measure a degree,
e.g. defectiveness.
ATAvi = σ2i vi, AATui = σ2i ui ui ⇒ vi are the e-vectors of ATA, ui are the e-vectors
of AAT . They share the same e-values σ2i

vTi vj =

{
1 i = j
0 i 6= j

, uTi uj =

{
1 i = j
0 i 6= j

⇒ UTU = VTV = I
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How Does Singular Values Deal with Numerical Issues

The rank of A =

[
1 1010

0 1

]
⇒ rank=2

Calculate rank of A + E =

[
1 1010

10−10 1

]
where E =

[
0 0

10−10 0

]
⇒ rank=1

Check the singular values of A
σ1(A) = 1010, σ2(A) ≈ 10−10.
We can see that the smallest sigular value is already very close to 0, which robustly implies the
matrix is close to be defective.
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Symmetric Matrix

In order to learn SVD, we need to under understand positive definite and positive definite.
Given A real, it is a symmetric matrix: AT = A. Symmetric matrices have very nice features:

All its eigenvalues are real

vHAv = vHλv = λvHv,

{
(vHAv)H = vHAHv = vHATv = vHAv

(vHv)H = vHv
.

Both vHAv and λvHv are real, λ is real.
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Symmetric Matrix (cont.)

Given A real, it is a symmetric matrix: AT = A.

A has n orthogonal eigenvectors
Let λ1 6= λ2,Av1 = λ1v1,
⇒ Av2 = λ2v2. Multiply vT2 on both side ⇒ vT2 Av1 = λ1v

T
2 v1.

Take transpose vT1 ATv2 = λ2v
T
2 v1. Since A is symmetric: vT1 Av2 = λ2v

T
2 v1

⇒ vT1 λ2v2 = λ1v
T
2 v1, (λ1 − λ2) vT1 v2 = 0, λ1 6= λ2 ⇒ vT1 v2 = 0

Let M = [v1, · · · ,vn], where vi are normalized e-vectors (orthonormal e-vectors), i.e.
||vi||2 = 1⇒ MTM = I, MT = M−1 ⇒ A = MΛM−1 = MΛMT ,
where Λ is diagonal with real values and columns of M are orthogonal.

Great! Now we just need to construct a symmetric matrix related A to help us to get these
nice features. The easiest one is ATA! Actually it is a special type of symmetric matrix:
positive definite matrix!
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Positive Definiteness

A symmetric matrix P is positive definite if for ∀x 6= 0, xTPx > 0.
Every eigenvalue of P is positive
xTPx = xTMP̂MTx = (MTx)T P̂(MTx) = zT P̂z =

∑
λiiz

2
i ≥ 0

where z = MTx

A symmetric matrix P is positive semi-definite if for ∀x 6= 0, xTPx ≥ 0.
Every eigenvalue of P is nonnegative

ATA is positive semi-definite, because

Symmetric: (ATA)T = ATA

xTATAx = (Ax)T (Ax) ≥ 0

Similarly, AAT is positive semi-definite too.
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Derivation

Ding Zhao (CMU) M1-3: Controllability and Observability 44 / 48



Gram-Schmidt Process

Given a basis {y1, ...,yn} find a new basis {v1, ...,vn} that is orthonormal and is a basis for
span {y1, ...,yn}.

1 Generally: vk = yk −
∑k−1

j=1
〈vj ,yk〉
‖vj‖2 · vj

2 Normalize {v1, . . . ,vn} as { v1
‖v2‖ ,

v2
‖v2‖ , . . . ,

vn
‖vn‖} to obtain an orthonormal set.
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Example

3× 3 example:
Consider

A =

 1 2 3
0 1 1
0 0 1


y1 y2 y3

Let v1 = y1 =

 1
0
0

 . Applying Gram-schmidt process,

v2 = y2 −
〈v1,y2〉
‖v1‖2

v1 =

 0
1
0


v3 = y3 −

〈v1,y3〉
‖v1‖2

v1 −
〈v2,y3〉
‖v2‖2

v2 =

 0
0
1


Consider orthornormal basis Q =

[
v1
‖v1‖

v2
‖v2‖

v3
‖v3‖

]
=

 1 0 0
0 1 0
0 0 1


q1 q2 q3

. Let A = QR

R = Q−1A =

 1 2 3
0 1 1
0 0 1
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QR Decomposition
Orthornormal basis spanning A = {y1, ...,yn}
can be computed using Gram-Schmidt process
v1 = y1 q1 = v1

‖v1‖
v2 = y2 − 〈v1,y2〉

‖v1‖2 v1 q2 = v2
‖v2‖

v3 = y3 − 〈v1,y3〉
‖v1‖2 v1 − 〈v2,y3〉

‖v2‖2 v2 q3 = v3
‖v3‖

...
...

vk = yk −
∑k−1

j=1
〈vj ,yk〉
‖vj‖2 qk = vk

‖vk‖

The yis can be expressed over the newly
computed orthonormal basis as

y1 = 〈q1,y1〉q1

y2 = 〈q1,y2〉q1 + 〈q2,y2〉q2

y3 = 〈q1,y3〉q1 + 〈q2,y3〉q2 + 〈q3,y3〉q3

...

yk =

k∑
j=1

〈qj ,yk〉qj

This can be written in matrix form as A = QR where

Q =
[

q1 · · · qn
]
, R =


〈q1,y1〉 〈q1,y2〉 〈q1,y3〉 · · ·

0 〈q2,y2〉 〈q2,y3〉 · · ·
0 0 〈q3,y3〉 . . .
...

...
...

. . .
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Recap: Test Controllability & Observability using Jordan Form

Theorem

Let B̂λibe the matrix of rows of B̂ corresponding to the last row of each Jordan block
corresponding to λi. Then an LTI system is controllable ⇔ B̂λi has full row rank for any λi.

Theorem

Let Ĉλibe the matrix of columns of Ĉ corresponding to the first columns of each Jordan block
corresponding to λi. Then a LTI system is observable⇔Ĉλi has full column rank for any λi
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