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Recap: State Space Equations

general (nonlinear) linear

time-varying
ẋ = f(x, u, t)

y = g(x, u, t)

ẋ = A(t)x+B(t)u

y = C(t)x+D(t)u

time-invariant
ẋ = f(x, u)

y = g(x, u)

ẋ = Ax+Bu

y = Cx+Du

where u ∈ Rm is input, x ∈ Rn is the states, and y ∈ Rp is the output. In this course, we will
focus on the linear SS problems.
From this lecture, I will not deliberately distinguish between scalars and vectors using the bold font, so you may see x

instead of x that is actually vector.
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Dynamics (Solutions) of Linear Time Invariant State Equations

The state space equation:
ẋ = Ax+Bu
y = Cx+Du
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Properties of Matrix Exponential

Define eAt = I +At+ A2t2

2! + · · ·
1 e0n×n = I

2 eA(t+τ) = eAt · eAτ

3 e(A+B)t = eAt · eBt ⇔ AB = BA Proved by definition

4 [eAt]−1 = e−At proved by 3: eAt · e−At = e0n×n = I

5 e(A
T ) = (eA)T proved by definition

6 det(eA) = etr(A) Very useful in developing Kalman Filter

7 d
dte

At = AeAt = eAtA proved by definition, will be used today
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Dynamics (Solutions) of Linear Time Invariant State Equations

The state space equation:
ẋ = Ax+Bu
y = Cx+Du

Rewrite as ẋ−Ax = Bu⇒ e−Atẋ− e−AtAx = e−AtBu

Consider d
dt(e

−Atx) = −Ae−Atx+ e−Atẋ = e−Atẋ− e−AtAx

Therefore d
dt(e

−Atx) = e−AtBu

e−Atx|tt0 =
∫ t
t0
e−AτBu(τ)dτ

e−Atx(t)− e−At0x(t0) =
∫ t
t0
e−AτBu(τ)dτ

x(t) = eAte−At0x(t0) + eAt
∫ t
t0
e−AτBu(τ)dτ
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Dynamics (Solutions) of Linear Time Invariant State Equation

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ

y(t) = CeA(t−t0)x(t0) + C

∫ t

t0

eA(t−τ)Bu(τ)dτ +Du(t)
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Ways to compute eAt

1 Apply the series definition:
eAt =

∑∞
k=0

Aktk

k!

2 Apply Cayley-Hamilton theorem (finite polynomial - today):
eAt = β0I + β1A+ · · ·+ βn−1A

n−1

3 Use similarity transformations (matrix manipulation - next lecture):
eAt = MeJtM−1
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Eigenvalues and Eigenvectors

Definition

Consider a square matrix A
An eigenvector for A is a non-null vector v 6= 0 for which there exists an eigenvalue λ ∈ R
such that

Av = λv

Some basic properties:

An eigenvector has at most one eigenvalue

If v is an eigenvector, then so is av, ∀ scalar a 6= 0

a normalized e-vector is defined as v = v
||v||2
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Determinant of Matrix

Minors An n× n matrix A contains n2 elements aij . Each of these has associated with it a
unique scalar, called a minor Mij . The minor Mpq is the determinant of the n− 1× n− 1
matrix formed from A by crossing out the p th row and q th column.

Cofactors Each element apq of A has a cofactor Cpq, which differs from Mpq at most by a
sign change. Cofactors are sometimes called signed minors for this reason and are given by
Cpq = (−1)p+qMpq.

Determinants by Laplace Expansion If A is an n× n matrix, any arbitrary row k can be
selected and |A| is then given by |A| =

∑n
j=1 akjCkj . Similarly, Laplace expansion can be

carried out with respect to any arbitrary column l, to obtain |A| =
∑n

i=1 ailCil. Laplace
expansion reduces the evaluation of an n× n determinant down to the evaluation of a string
of (n− 1)× (n− 1) determinants, namely, the cofactors.
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Determinant of Matrix

Example: Calculate determinant of A =

 2 4 1
3 0 2
2 0 3

 .
Three of its minors are∣∣∣∣[ a b

c d

]∣∣∣∣ = ad− bc,M12 =

∣∣∣∣ 3 2
2 3

∣∣∣∣ = 5, M22 =

∣∣∣∣ 2 1
2 3

∣∣∣∣ = 4, and M32 =

∣∣∣∣ 2 1
3 2

∣∣∣∣ = 1

The associated cofactors are

C12 = (−1)35 = −5, C22 = (−1)44 = 4, C32 = (−1)51 = −1

Using Laplace expansion with respect to column 2 gives |A| = 4C12 = −20

Laplace, 1749-1827
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Geometric Meaning of the Determinant (Group Discussion)

The area of the parallelogram is the absolute value of the determinant of the matrix formed by
the vectors representing the parallelogram’s sides.

[
a b
c d

]
= ad− bc

Note: Determinant is not
the real volume as it can be
negative.

(0, 0)

(a, c)

(b, d)

(a+ b, c+ d)

(ad− bc)
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Properties of Determinant

Given A,B ∈ C(n×n): det(A) 6= 0 ⇐⇒ A is nonsingular/not defective ⇐⇒ rows and
columns independent

Properties:

det(αA) = αn det(A)

det(AT ) = det(A)

det(I) = 1

det(AB) = det(A) det(B)

det(A−1) = 1/ det(A)

If A is triangular matrix, det A =
∏

diag(A) (What if it is a diagonal matrix?)
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Linear Combination

A linear combination is any finite sum of the form

α1x1 + α2x2 + . . .+ αnxn

where αi ∈ F ,xi ∈X , 1 ≤ i ≤ n, n is an arbitrary integer ≥ 1
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Linear Independence

A finite set of vectors x1, ...,xk ∈X is linearly dependent if there exist scalars
α1, ..., αk ∈ F NOT ALL ZERO, such that

α1x1 + α2x2 + . . .+ αkxk = 0

Otherwise, the set is linearly independent.

The maximal number of elements in any linearly independent set of vectors in (X ,F ), is
called the dimension of (X ,F ).

Question: What is the dimension of our living space.

Question: if a set X1 is linearly independent and X2 is linearly dependent, then is {X1,X2}
linearly independent? NO
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Span

Let S ⊂X be a subset of (X ,F ).The span of S is the set of all linear combinations of
elements of S :

span{S } = {x ∈X |∃k <∞, x1, . . . ,xk ∈ S , α1, . . . , αk ∈ F ,

x = α1x
1 + α2x

2 + . . .+ αkx
k}

Example: Span of

{[
1
0

]
,

[
0
1

]
,

[
0
2

]}
? What is the dimension?

-
(
R2,R

)
Dim: 2
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Basis

A set of vectors B in (X ,F ) is a basis iff:

1 B is linearly independent

2 span{B} = X
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Characteristic Polynomial

(A− λI)v = 0,v 6= 0⇒ (A− λI) singular/defective⇒ det(λI−A) = |λI−A| = 0

Define characteristic polynomial:

∆(λ) = det(A− λI) = (−λ)n + cn−1λ
n−1 + · · ·+ c1λ+ c0

In factored form,
∆(λ) = (−1)n(λ− λ1)(λ− λ2) · · · (λ− λn) = 0,

where the roots are λ1, λ2, ..., λn.
Note: sometimes, we may also use ∆(λ) = det(λI−A) = (λ− λ1)(λ− λ2) · · · (λ− λn)
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Example: Eigenvalues of 3× 3 Matrix

Consider the matrix  −2 −4 2
−2 1 2
4 2 5


The characteristic equation is

det

 −2− λ −4 2
−2 1− λ 2
4 2 5− λ

 = 0

(−2− λ)[(1− λ)(5− λ)− 2× 2] + 4[(−2)× (5− λ)− 4× 2] + 2[(−2)× 2− 4(1− λ)] = 0

−λ3 + 4λ2 + 27λ− 90 = 0

λ3 − 4λ2 − 27λ+ 90 = (λ− 3)
(
λ2 − λ− 30

)
= (λ− 3)(λ+ 5)(λ− 6) = 0

Therefore, the eigenvalues are 3, -5 and 6.
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Cayley Hamilton Theorem

Given A ∈ Rn×n with characteristic polynomial
∆(λ) = det(λI −A) = λn + αn−1λ

n−1 + . . .+ α1λ+ α0. Then,

∆(A) = An + αn−1A
n−1 + . . .+ α1A + α0I = 0

That is, A satisfies its own characteristic equation.

An = −αn−1An−1 − αn−2An−2 − . . .− α1A− α0I

Cayley proved 2 by 2. Hamilton generalized the Theorem. We will learn his other theorem in
the optimization section. Heuristic proof (2by2): timesλv to the right of
A2 + α1A + λ0 = 0→ λ2Av + α1λAv + α0Av = (λ2 + α1λ+ α0)Av = 0

Cayley 1821-1895
Hamilton 1805-1865

Ding Zhao (CMU) M1-2: Solving Linear Dynamics 22 / 86



Application of Cayley Hamilton Theorem: A−1

∆(A) = An + αn−1A
n−1 + . . .+ α1A + α0I = 0

A quick application:

−α0I = A(An−1 + αn−1A
n−2 + . . .+ α1)

If α0 6= 0, we can compute

A−1 = − 1

α0
(An−1 + αn−1A

n−2 + . . .+ α1)
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Application of Cayley Hamilton Theorem: p(A)

Another application is to calculate the polynomial functions of A ∈ Rn×n. Let
p(A) = kmAm + ...+ k1A + k0I and m be an arbitrary integer.

∆(A) = An + αn−1A
n−1 + . . .+ α1A + α0I = 0

⇒ An = −αn−1An−1 − αn−2An−2 − . . .− α1A− α0I

An+1 = AAn =− αn−1An − αn−2An−1 − . . .− α1A
2 − α0A

=− αn−1(−αn−1An−1 − . . .− α1A− α0I)

− αn−2An−1 − . . .− α1A
2 − α0A

This implies that any polynomial p(λ), no matter its degree, can be written as

p(A) = βn−1A
n−1 + . . .+ β1A + β0I

Now the problem is how to get βi
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Application of Cayley Hamilton Theorem: p(A)

We can do the same thing for the characteristic equation:

∆(λ) = λn + αn−1λ
n−1 + . . .+ α1λ+ α0 = 0

⇒ λn = −αn−1λn−1 − . . .− α1λ− α0

λn+1 = λλn =− αn−1λn − αn−2λn−1 − . . .− α1λ
2 − α0λ

=− αn−1(−αn−1λn−1 − . . .− α1λ− α0)

− αn−2λn−1 − . . .− α1λ
2 − α0λ

⇒ p(λ) = g(λ) = βn−1λ
n−1 + . . .+ β1λ+ β0

where p(λ) is an arbitrary dimension polynomial (now it is just a regular function, we know
how to compute it!) and g(λ) is an (n− 1)st order polynomial in λ.
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Extend Cayley Hamilton Theorem to Any Analytic Function

Since we know how to compute p(A), we can actually compute any function f(x) such that it
can be approximated by a polynomial series that converges. Typical examples include:

sin(A) = A− A3

3! + A5

5! −
A7

7! + . . .

cos(A) = I− A2

2! + A4

4! −
A6

6! + . . .

eAt = I + At+ A2t2

2! + A3t3

3! + . . . ⇒
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Application of Cayley Hamilton Theorem

When eigenvalues λi are distinct (different from each other), solve βi from the n equations:

f(λ1) = g(β1:n, λ1)

f(λ2) = g(β1:n, λ2)

...
f(λn) = g(β1:n, λn)

Then calculate f(A) = g(A) given the βi.
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Example

Find matrix for eAt where A =

(
1 2
0 3

)

The characteristic polynomial is ∆(λ) = (λ− 1)(λ− 3). The eigenvalues are λ = 1, 3. Recall:
f(λ) = g(β, λ) = βn−1λ

n−1 + . . .+ β1λ+ β0

f(λ) = eλ1t = β1λ1 + β0
f(λ) = eλ2t = β1λ2 + β0

⇒ et = β1 + β0
e3t = 3β1 + β0

⇒

{
β0 = 3et−e3t

2

β1 = e3t−et
2

f(A) = eAt = β1A + β0I =

(
et e3t − et
0 e3t

)
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Repeated Eigenvalues

When λi repeats m times, use the derivatives of f and g to populate the equations

df(λi)
dλi

= dg(λi)
dλi

d2f(λi)
dλ2i

= d2g(λi)
dλ2i

...
d(m−1)f(λi)

dλm−1
i

= d(m−1)g(λi)

dλm−1
i
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Example: Repeated Eigenvalues

Find matrix for eAt where A =

(
1 2
0 1

)

Repeated eigenavlues. The characteristic polynomial is ∆(λ) = (λ− 1)2. The eigenvalues are
λ = 1. Recall: f(λ) = βn−1λ

n−1 + . . .+ β1λ+ β0

f(λ) = eλt = β1λ+ β0
df(λ)
dλ = dg(λ)

dλ ⇒ teλt = β1
⇒ et = β1 + β0

tet = β1
⇒
{
β0 = et − tet
β1 = tet

f(A) = eAt = β1A + β0I =

(
et 2tet

0 et

)
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Why does Taking Gradient Work?

Consider calculating A3 for A =

[
1 0
0 2

]
using Cayley Hamilton theorem

The characteristic polynomial is ∆(λ) = λ2 − 3λ+ 2. The eigenvalues are λ = 1, 2. Recall:
f(λ) = g(β, λ) = βn−1λ

n−1 + . . .+ β1λ+ β0 = β1λ+ β0

f(λ) = λ31 = β1λ1 + β0
f(λ) = λ32 = β1λ2 + β0

⇒ 1 = β1 + β0
8 = 2β1 + β0

⇒
{
β0 = −6
β1 = 7

Given ∆(λ) = 0 and f(λ)− g(β, λ) = 0 share the same
roots, the latter expression can be written as

f(λ)− g(β, λ) = ∆(λ)h(λ)

⇒ λ3 − 7λ+ 6 = (λ2 − 3λ+ 2)h(λ)⇒ h(λ) = λ+ 3

At λ = 1, f(1)− g(β, 1) = 0
At λ = 2, f(2)− g(β, 2) = 0
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Example

Consider calculating A3 for A =

[
2 0
0 2

]
using Cayley Hamilton theorem

Repeated eigenvalues: Characteristic polynomial ∆(λ) = λ2 − 4λ+ 4. The eigenvalues are
λ = 2. Recall: f(λ) = g(β, λ) = βn−1λ

n−1 + . . .+ β1λ+ β0 = β1λ+ β0

f(λ) = λ3 = β1λ+ β0
df(λ)
dλ = dg(λ)

dλ ⇒ 3λ2 = β1
⇒ 8 = 2β1 + β0

12 = β1
⇒
{
β0 = −16
β1 = 12

Consider
f(λ)− g(β, λ) = ∆(λ)h(λ)

⇒ λ3 − 12λ+ 16 = (λ2 − 4λ+ 4)(λ+ 4) = 0

At λ = 2,
f(2)− g(β, 2) = 0

f ′(2)− g′(β, 2) = 0
Note:

the gradient is zero at 2
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Solve the Longitudinal Driving Example (Conventional Way)

F = ma = mp̈ = t2

ṗ = v

p(t)

m
p(0) = v(0) = 0

Which is the state?:
Solve p(t)

p̈(t) = a = F (t)/m

ṗ(t) = ṗ(0) +

∫ t

0
p̈(t)dτ

=

∫ t

0

F (t)

m
dτ =

∫ t

0

t2

m
dτ =

t3

3m

p(t) = p(0) +

∫ t

0
ṗ(t)dτ =

∫ t

0

t3

3m
dτ =

t4

12m
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Solve the Longitudinal Driving Example (State Space) (Group Discussion)

F = ma = mp̈ = t2

ṗ = v

p(t)

m
p(0) = v(0) = 0

Solve p(t)

x1 = p , x2 = ṗ, x = [x1, x2]
T

ẋ =

[
0 1
0 0

]
x +

[
0
1/m

]
F

y =
[

1 0
]
x
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Solve the Longitudinal Driving Example (Cayley-Hamilton)

E-values 0 and 0. Use C-H to find eAt{
e0t = β1 · 0 + β0 ⇒ β0 = 1
te0t = β1 ⇒ β1 = t

⇒ eAt = t

[
0 1
0 0

]
+ I =

[
1 t
0 1

]
Calculate y(t) with eAt

y(t) = CeA(t−t0)x(t0) + C

∫ t

t0

eA(t−τ)Bu(τ)dτ +Du(t)

=
[

1 0
] ∫ t

0

[
1 t− τ
0 1

] [
0
1/m

]
τ2dτ =

[
1 0

] ∫ t

0

[
(t− τ)/m
1/m

]
τ2dτ

=

∫ t

0

t− τ
m

τ2dτ =

∫ t

0

tτ2

m
− τ3

m
dτ = (

t

3m
τ3 − τ4

4m
)|t0 = t4(

1

3m
− 1

4m
) =

t4

12m
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Recap: Cayley Hamilton Theorem

Given A ∈ Rn×n with characteristic polynomial
∆(λ) = det(λI −A) = λn + αn−1λ

n−1 + . . .+ α1λ+ α0. Then,

∆(A) = An + αn−1A
n−1 + . . .+ α1A + α0I = 0

That is, A satisfies its own characteristic equation.

An = −αn−1An−1 − αn−2An−2 − . . .− α1A− α0I
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Recap: Application of the Cayley Hamilton Theorem

Given A ∈ Rn×n with eigenvalues λi, let f(x)
be an arbitrary scalar function and g(x) an
(n− 1)st order polinomial. When eigenvalues
λi are distinct, solve βi from the n equations:

f(λ1) = g(β1, λ1)

f(λ2) = g(β2, λ2)

...
f(λn) = g(βn, λn)

Then calculate f(A) = g(A) given the βi.

When λi repeats m times, use the derivatives
of f and g to populate the equations

df(λi)
dλi

= dg(λi)
dλi

d2f(λi)
dλ2i

= d2g(λi)
dλ2i

...
d(m−1)f(λi)

dλm−1
i

= d(m−1)g(λi)

dλm−1
i
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Discrete-Time Linear Time Invariant Systems

x (1) = Ax (0) +Bu (0)

x (2) = Ax (1) +Bu (1) = A2x (0) +ABu (0) +Bu (1)

...

x (k) = Akx (0) +

k−1∑
m=0

Ak−m−1Bu (m)

y (k) = CAkx (0) +

k−1∑
m=0

CAk−m−1Bu (m) +Du (k)

Need to compute Ak
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Similarity Transformation

A square matrix can always be decomposed by a similarity transformation, which is a
relationship between two square matrices A and Â of the form

Â = S−1AS⇔ A = SÂS−1

for any nonsingular matrix S.
Here Â is in either diagonal or Jordan form. In either case,

Ak = SÂS−1SÂS−1 · · ·SÂS−1 = SÂkS−1

is much easier to compute. We will see that actually eÂt is easier to compute too.
Let us first recap matrix inverse.
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Recap: Matrix Inverse

In order to learn similarity transformation, we need review the definition of matrix inverse.
If matrix A is square, and (square) matrix B satisfies

BA = AB = I

then B is called the inverse of A and is denoted as B = A−1 For the inverse to exist, A must
have a nonzero determinant, i.e., A must be non-singular. When this is true, A has a unique
inverse given by

A−1 =
CT

|A|

where C is the matrix formed by the cofactors Cij . The matrix CT is called the adjoint
matrix, Adj(A) . Thus the inverse of a nonsingular matrix is

A−1 = Adj(A)/|A|
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Recap: Matrix Inverse Properties

(
A−1

)−1
= A, i.e., inverse of inverse is original matrix (assuming A is invertible)

(AB)−1 = B−1A−1 (assuming A,B are invertible)(
AT
)−1

=
(
A−1

)T
(assuming A is invertible )

I−1 = I

(αA)−1 = (1/α)A−1 (assuming A invertible, α 6= 0)
A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An


−1

=


A−11 0 · · · 0

0 A−12 · · · 0
...

...
. . .

...
0 0 · · · A−1n


A−1 =

[
a b
c d

]−1
=

1

det A

[
d −b
−c a

]
=

1

ad− bc

[
d −b
−c a

]
How to compute the inverse of high dimensional matrices
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Recap: Elementary Operation

How to compute the inverse? We can use Gaussian Elimination. First need to know the three
basic operations on a matrix, called elementary operations:

1 Row switching: The interchange of two rows (or of two columns).

2 Row multiplication: The multiplication of every element in a given row (or column) by a
scalar α.

3 Row addition: The multiplication of the elements of a given row (or column) by a scalar
α, and adding the result to another row (column). The original row (column) is unaltered.
We will mainly use row operation in this course.
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Recap: Gaussian Elimination

Highlights of Gaussian Elimination:
Use elementary row operations to reduce the augmented matrix to a form such that

1 The first non zero entry of each row should be on the right-hand side of the first non zero
entry of the preceding row. Simply put, the coefficient part (corresponding to A) of the
augmented matrix should form an n× n upper triangular matrix.

2 Any zero row should be at the bottom of the matrix.

Gaussian elimination uses the row reduced form of the augmented matrix to compactly solve a
given system of linear equations (echelon form).

Gauss, 1777-1855
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Example

Ax = y; A =

 2 1 1
4 −6 0
−2 7 2

 ; y =

 5
−2
9


[A|y] =

 2 1 1 5
4 −6 0 −2
−2 7 2 9


Subtract twice of first row from the second and add first equation to the third row.

=

2 1 1 5
0 −8 −2 −12
0 8 3 14


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Example cont.

Add row 2 to the third row.

=

2 1 1 5
0 −8 −2 −12
0 0 1 2


The diagonal elements: 2,-8 and 1 are the pivot elements.
Rank of A is defined as the number of non-zero rows of the first n columns.
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Use Gaussian Elimination for Matrix Inverse (Group Discussion)

A =

 2 −1 0
−1 2 −1
0 −1 2

⇒ [A|I] =

 2 −1 0 1 0 0
−1 2 −1 0 1 0
0 −1 2 0 0 1


Gaussian Elimination⇒ [I|B] =

 1 0 0 3
4

1
2

1
4

0 1 0 1
2 1 1

2
0 0 1 1

4
1
2

3
4

 .
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How do Computers do Gaussian Elimination - LU decomposition

Consider a system of 3 equations. For A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

, we have L =

 1 0 0
l21 1 0
l31 l32 1


and U =

 u11 u12 u13
0 u22 u23
0 0 u33

 such that A = LU. The upper triangular matrix U formed is

equivalent to the result of applying Gaussian elimination on A a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

 1 0 0
l21 1 0
l31 l32 1

 u11 u12 u13
0 u22 u23
0 0 u33


=

 u11 u12 u13
l21u11 l21u12 + u22 l21u13 + u23
l31u11 l31u12 + l32u22 l31u13 + l32u23 + u33


We use this to find the entries in L and U.
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Example: LU decomposition for Gaussian Elimination

A =

 2. 1 1
4 −6 0
−2 7 2

 ; y =

 5
−2
9


Considering LU decomposition, we have A = LU which gives u11 u12 u13

l21u11 l21u12 + u22 l21u13 + u23
l31u11 l31u12 + l32u22 l31u13 + l32u23 + u33

 =

 2 1 1
4 −6 0
−2 7 2



u11 = 2 u12 = 1 u13 = 1

l21u11 = 4 ⇒ l21 × 2 = 4 ⇒ l21 = 2

l21u12 + u22 = −6 ⇒ 2× 1 + u22 = −6 ⇒ u22 = −8

l21u13 + u23 = 0 ⇒ 2× 1 + u23 = 0 ⇒ u23 = −2
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Example cont.

Similarly, we find l31 = −1, l32 = −1, u33 = 1 Therefore, we obtain

L =

 1 0 0
2 1 0
−1 −1 1

 , U =

 2 1 1
0 −8 −2
0 0 1



The next step is to solve Lz = y for the vector z =

 z1
z2
z3

 = Ux i.e. we consider

Lz =

 1 0 0
2 1 0
−1 −1 1

 z1
z2
z3

 =

 5
−2
9

 = y⇒
z1 = 5

2z1 + z2 = −2
−z1 − z2 + z3 = 9

⇒
z1 = 5
z2 = −12
z3 = 2
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Example cont.

Now that we have found z we finish the procedure by solving Ux = z for x. That is we solve

Ux =

 2 1 1
0 −8 −2
0 0 1

 x1
x2
x3

 =

 5
−12

2

 = z⇒
2x1 + x2 + x3 = 5
−8x2 − 2x3 = −12

x3 = 2
⇒

x1 = 1
x2 = 1
x3 = 2

Therefore we have found that the solution to the given system of simultaneous equations is

x =

 1
1
2


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Another Way to Check Invertibility Rank

(X ,F ) and (Y ,F ) are vector spaces. A : X → Y is a linear transformation.

y = Ax

Null space:
N (A) = {x ∈X |Ax = 0}

Nullity of A = dimN (A)

Range space (linear combination of columns):

R(A) = {y ∈ Y |∃x ∈X , such that y = Ax}

Rank of A = dimR(A)
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Example of Range Space and Null Space

A =

 0 1 0
0 0 2
0 0 0


N (A) =
span {[1, 0, 0]T } ⇒ Nullity of A = 1

R(A) =
span {[1, 0, 0]T , [0, 1, 0]T } ⇒ Rank of A = 2

Note: r(A)=number of pivot elements in Gaussian elimination. Any column without a pivot
is a free variable. Note: A needs to have full rank to be invertable.
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Summary of Ways to Check Invertibility

Given A ∈ Rn×n

A has full rank; that is, r(A) = n

det(A) 6= 0

All columns (or rows) of A are linear independent

The null space of N (A) = {0}
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Recap: Similarity Transformation

A square matrix can always be decomposed by a similarity transformation, which is a
relationship between two square matrices A and Â of the form

Â = S−1AS⇔ A = SÂS−1

for any nonsingular matrix S.
Here Â is in either diagonal or Jordan form. In either case,

Ak = SÂS−1SÂS−1 · · ·SÂS−1 = SÂkS−1

is much easier to compute. We will see that actually eÂt is easier to compute too.
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Diagonalizability (Distinct Eigenvalues)

Let A have distinct eigenvalues λi, 1 ≤ i ≤ n with corresponding eigenvectors {v1 . . .vn}.

Avi = λivi

A
[
v1 v2 . . . vn

]
=
[
v1 v2 . . . vn

]

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn


Define the modal matrix M = [v1,v2, . . . ,vn]. Because v1 . . .vn are independent, M is
nonsingular. A can be diagonalized as

AM = MΛ⇒ A = M


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

M−1 = MΛM−1

Note here M = S−1 for conventional reason.
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Examples

Type I (distinct eigenvalues):

A =

3 1 0
0 2 0
0 0 1

 ,x1 =

10
0

x2 =

01
0

x3 =

 0
0

1/2

x4 =

 1
−1
0

, compute A2020. Choose e-vectors from xi

λ1 = 3, λ2 = 2, λ3 = 1,v1 = x1,v2 = x4, v3 = x3 M = [x1,x4,x3] Use Gaussian elimination:

A = [M|I] =

 1 1 0 1 0 0
0 −1 0 0 1 0
0 0 1/2 0 0 1

⇒
 1 0 0 1 1 0

0 1 0 0 −1 0
0 0 1 0 0 2

⇒M−1 =

1 1 0
0 −1 0
0 0 2


A = MΛM−1 =

1 1 0
0 −1 0
0 0 1/2

3 0 0
0 2 0
0 0 1

1 1 0
0 −1 0
0 0 2


A2020 = MΛ2020M−1 =

1 1 0
0 −1 0
0 0 1/2

32020 0 0
0 22020 0
0 0 1

1 1 0
0 −1 0
0 0 2


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Characteristic Polynomial with Repeated Roots

We encounted this problem with Cayley Hamilton theorem. Here we need a different solution.
If there are p < n distinct roots,

∆(λ) = (λ− λ1)m1(λ− λ2)m2 · · · (λ− λp)mp

mi is called the algebraic multiplicity of the eigenvalue λi, with m1 +m2 + · · ·+mp = n. λi
called as an mi-order root

The dimension of this space is called the geometric mutiplicity of λi

qi = #of linearly independent eigenvector of λi

= n− rank(A− λiI) ≤ mi
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Examples cont.

Type II1 Matrix of decomposition:

A =

3 1 0
0 2 0
0 0 2

 ,x1 =

10
0

x2 =

01
0

x3 =

 0
0

1/2

x4 =

 1
−1
0

, Choose e-vectors from xi

n = 3, p = 2. For λ1 = 3,m1 = 1, q1 = 1, we have evector v1 = x1. For λ2 = 2,m1 = 2, we
have two eigenvectors v2 = x3,v3 = x4. So q2 = 2.

A = MΛM−1 =

1 1 0
0 −1 0
0 0 1/2

3 0 0
0 2 0
0 0 2

1 1 0
0 −1 0
0 0 2


Similar to Type I.
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Examples cont.

Type II2 (qi = 1) A =

2 1 0
0 2 2
0 0 2

 ,x1 =

10
0

x2 =

01
0

x3 =

 0
0

1/2

x4 =

 1
−1
0

, Choose e-vectors from xi

Decomposition: n = 3, p = 1. For λ1 = 2,m1 = 3,A− λ1I =

0 1 0
0 0 2
0 0 0

,

q1 = n− rank(A− λ1I) = 3− 2 = 1
We can only find a single eigenvector v1 = x1 for the null space of A− λ1I. q1 = 1. A is
defective. The total number of independent e-vectors is smaller than n and this sadly means
A can not be fully decoupled!!

So we do what we can and try to decompose A as much as possible. ⇒ Jordan
Decomposition. The key problem is that we do not have enough eigenvectors for the repeated
λi. So we need to generate some ”fake” but reasonable e-vectors. We call them ”generated
e-vectors”.

Ding Zhao (CMU) M1-2: Solving Linear Dynamics 60 / 86



Jordan Decomposition (Jordan Canonical Form)

Consider λ1 with p = 1, m1 = n, q1 = 1. Then m1 − q1 generalized
eigenvectors are required. Let Av1 = λ1v1 ←The usual e-vector
Av2 = λ1v2 + v1 ←Add the v1 term artificially

...
Avm1 = λ1vm1 + vm1−1
Now we have

A[v1 v2 v3 · · ·vn−1 vn] = [v1 v2 v3 · · ·vn−1 vn]



λ1 1 0 · · · 0 0
0 λ1 1 · · · 0 0
0 0 λ1 · · · 0 0
...
0 0 0 · · · λ1 1
0 0 0 · · · 0 λ1


⇒ AM = MJ, we call J a Jordan block.

A = MJM−1

Jordan, 1838-1922
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Examples cont.

Type II2 (qi = 1) A =

2 1 0
0 2 2
0 0 2

 ,x1 =

10
0

x2 =

01
0

x3 =

 0
0

1/2

x4 =

 1
−1
0

, Choose e-vectors from xi

Let us pick x1 = v1 and generalized v2 from (A− λ1I)v2 = v10 1 0
0 0 2
0 0 0

v2 =

1
0
0

 ,v2 = x2

(A− λ1I)v3 = v2 ⇒

0 1 0
0 0 2
0 0 0

v3 =

0
1
0

 ,v3 = x3

A = MΛM−1 =

1 0 0
0 1 0
0 0 1/2

2 1 0
0 2 1
0 0 2

1 0 0
0 1 0
0 0 2


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Examples cont.

Type II3 (1 < qi < mi),A =

2 0 0
0 2 2
0 0 2

 ,x1 =

10
0

x2 =

01
0

x3 =

 0
0

1/2

x4 =

 1
−1
0

, Choose e-vectors from

xi

p = 1,m1 = 3, λ1 = 2,A− λ1I =

0 0 0
0 0 2
0 0 0

 , q = n− rank(A− λ1I) = 2, we need 1

generated e-vector. Let v1 = x1,v2 = x2. We can not find a v3 satisfying (A− λ1I)v3 = v1.

Let (A− λ1I)v3 = v2.

0 0 0
0 0 2
0 0 0

v3 =

0
1
0

. Choose v3 = x3,

M = [v1,v2,v3],A = MΛM−1 =

1 0 0
0 1 0
0 0 1/2

2 2 0
0 2 1
0 0 2

1 0 0
0 1 0
0 0 2


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Examples cont.

Type II3 (1 < qi < mi)

We can also choose v3 =

 1
0

1/2

 or

 0
1

1/2

 or

 1
1

1/2

. It will not change the Jordan form. Let

COLAB LINK to do it quickly.
You can also let v1 = x2 and v2 = x1. In this case, v3 will be chained with v1 and place on

the right side of it. If M = [v2,v3,v2] J =

2 1 0
0 2 0
0 0 2

 to reflect the generation of v3 from

v1.
Jordan normal form is sometimes called ”Jordan Canonical form”. But, it is actually not fully
canonical. This is one of the limitations of the Jordan decomposition. We will learn some
canonical decomposition later with controllable and observable canonical forms.
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Jordan Decomposition In General

Let A be an n× n matrix with eigenvalues λ1, . . . , λn of algebraic multiplicities m1, ...,mp

and geometric multiplicities q1, ..., qp. Then ∃ an invertible matrix M such that
J = M−1AM, where

J =


Ĵ1 0 0 0

0 Ĵ2 0 0

0 0
. . . 0

0 0 0 Ĵp


n×n

#blocks = p(#distinct e-values)

Ĵi =


Ĵi1 0 0 0

0 Ĵi2 0 0

0 0
. . . 0

0 0 0 Ĵiqi


mi×mi

Ĵij =

 λi 1 0

0
. . . 1

0 0 λi


?×?,?≥2

#blocks = qi( #indep e-vectors assoc. with λi) In general, the dimensions for the 3rd
level Jordan blocks are undetermined, except in type I (dim = 1), II1 (1), or II2 (mi).
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Another Example of Jordan Decomposition

A is 7× 7. Distinct λ1, λ2,m1 = 5,m2 = 2, q1 = 2, q2 = 1
What are the possible Jordan blocks?

Ĵ =

[
Ĵ1 0

0 Ĵ2

]
Ĵ2 =

[
λ2 1
0 λ2

]
Ĵ1 =

[
Ĵ11 0

0 Ĵ12

]
The dimension of Ĵ11 and Ĵ12 can vary
based on how we want to build the chain
of generated e-vectors. It can be either
(1,4) or (2,3)

Ĵ1 =


λ1 0 0 0 0
0 λ1 1 0 0
0 0 λ1 1 0
0 0 0 λ1 1
0 0 0 0 λ1



Ĵ1 =


λ1 1 0 0 0
0 λ1 0 0 0
0 0 λ1 1 0
0 0 0 λ1 1
0 0 0 0 λ1


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Recap: Similarity Decomposition

Similarity transformations: Â = S−1AS

Model matrix M = [v1,v2, . . . ,vn], where v1 . . .vn are independent eigenvectors.

Type I, p = n,mi = qi = 1 (distinct eigenvalues): Λ = M−1AM, where Λ is diagonal.

Type II1, p < n, mi = qi > 0, Λ = M−1AM (non-defective)

Type II2, p = 1 < n, m1 = n, q1 = 1 (a single Jordan block): J = M−1AM, where

J =

 λi 1 0

0
. . . 1

0 0 λi

, where v1 is e-vector and vi, i > 1 are generated eigenvectors:

Av1 = λ1v1,Av2 = λ1v2 + v1 · · · ,Avmi = λ1vmi + vmi−1

Type II3, p < n, mi > qi > 1 (Jordan Decomposition):
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Recap: Jordan Decomposition In General

Let A be an n× n matrix with eigenvalues λ1, . . . , λn of algebraic multiplicities m1, ...,mp

and geometric multiplicities q1, ..., qp. Then ∃ an invertible matrix M such that
J = M−1AM, where

J =


Ĵ1 0 0 0

0 Ĵ2 0 0

0 0
. . . 0

0 0 0 Ĵp


n×n

#blocks = p(#distinct e-values)

Ĵi =


Ĵi1 0 0 0

0 Ĵi2 0 0

0 0
. . . 0

0 0 0 Ĵiqi


mi×mi

Ĵij =

 λi 1 0

0
. . . 1

0 0 λi


?×?,?≥2

#blocks = qi( #indep e-vectors assoc. with λi) In general, we do not know what is the
dimensions for the 3rd level Jordan blocks except in type I, II1, or II2.
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Matrix Exponential

Theorem: Suppose that A and J are similar matrices. Then, so are eAt and eJt. In particular,
if A = MJM−1, then eAt = MeJtM−1.
Proof:Ak = MJkM−1. So plug in
eAt =

∑∞
k=0

Aktk

k! =
∑∞

k=0M
Jktk

k! M
−1 = M

∑∞
k=0

Jktk

k! M
−1 = MeJtM−1

Conclusion:To compute eAt, it is enough to know how to compute eJt, for J in Jordan
Canonical form

J =

 λ1 1 0
0 λ1 0

0 0 λ2

 =

[
J1 0

0 J2

]

eJt =

[
eJ1t 0

0 eJ2t

]
=

 eλ1t teλ1t 0
0 eλ1t 0

0 0 eλ2t


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Exponential of Jordan Form cont.

Given J =


2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 1

, find etJ

J =

[
J1 0
0 J2

]
⇒ etJ =

[
etJ1 0
0 etJ2

]
J1 = D +N =

 2 0 0
0 2 0
0 0 2

+

 0 1 0
0 0 1
0 0 0


etD =

 e2t 0 0
0 e2t 0
0 0 e2t

. Need to compute etN
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Exponential of Jordan Form

Apply Cayley-Hamilton theorem:

λ = 0, f(N) = etN , N2 =

 0 1 0
0 0 1
0 0 0

 0 1 0
0 0 1
0 0 0

 =

 0 0 1
0 0 0
0 0 0

 ,
f(λ) = etλ = 1, f ′(λ) = tetλ = t, f ′′(λ) = t2etλ = t2

g(λ) = β2λ
2 + β1λ+ β0 = β0, g

′(λ) = 2β2λ+ β1 = β1, g
′′(λ) = 2β2

f(λ) = g(λ), f ′(λ) = g′(λ), f ′′(λ) = g′′(λ)⇒ β0 = 1, β1 = t, β2 = 1
2 t

2

etN = f(N) = g(N) = 1
2 t

2N2 + tN + I =

 1 t 1
2 t

2

0 1 t
0 0 1


Finally, because DN = ND, etJ1 = et(D+N) = etD · etN =

 e2t te2t 1
2 t

2e2t

0 e2t te2t

0 0 e2t


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Exponential of Jordan Form

eJt =


eλ1t 0 0 · · · 0

0 eλ2t teλ2t · · · 0
0 0 eλ2t · · · 0
...

...
. . .

...


eJt has terms of the form tmeλit, with m 6= 0 for Jordan blocks of order > 1. We will use this
trick again in the stability analysis.
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Modal Decomposition

Using a similarity transformation, we can convert the state equation into diagonal (or Jordan)
form.

Let x = Mx′ where M = [v1|v2| · · · |vn] are the (generated) eigenvectors of A{
ẋ′ = M−1ÂMx′ +M−1Bu
y = CMx′ +Du

Here Â = M−1AM is in either diagonal or Jordan form. In either case, eÂt is easier to
compute.
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Application

Revisiting the same example ...

F = ma = mp̈ = t2

ṗ = v

p(t)

m
p(0) = v(0) = 0

Which is the state?:
{p, ṗ, p̈}, {ṗ, p̈}, {p, ṗ}, {p}
Solve p(t)

x1 = p , x2 = ṗ, x = [x1, x2]
T

ẋ =

[
0 1
0 0

]
x +

[
0
1/m

]
F

y =
[

1 0
]
x
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Application

E-values 0 and 0. Use Jordan form to find eAt

λ = 0,m = 2→ A− λI =

[
0 1
0 0

]
, q = n− rank(A− λ1I) = 1 < m⇒ J =

[
0 1
0 0

]
v1 =

[
1
0

]
and generalized v2 from (A− λ1I)v2 = v1 gives v2 =

[
1
1

]
⇒M =

[
1 1
0 1

]
A = MJM−1 ⇒ eAt = MeJtM−1 =

[
1 1
0 1

] [
e0t te0t

0 e0t

] [
1 1
0 1

]−1
=

[
1 t
0 1

]
Calculate y(t) with eAt

y(t) = CeA(t−t0)x(t0) + C

∫ t

t0

eA(t−τ)Bu(τ)dτ +Du(t)

=
[

1 0
] ∫ t

0

[
1 t− τ
0 1

] [
0
1/m

]
τ2dτ =

[
1 0

] ∫ t

0

[
(t− τ)/m
1/m

]
τ2dτ

=

∫ t

0

t− τ
m

τ2dτ =

∫ t

0

tτ2

m
− τ3

m
dτ = (

t

3m
τ3 − τ4

4m
)|t0 = t4(

1

3m
− 1

4m
) =

t4

12m
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Discrete-Time Linear Time Invariant Systems

x (1) = Ax (0) +Bu (0)

x (2) = Ax (1) +Bu (1) = A2x (0) +ABu (0) +Bu (1)

...

x (k) = Akx (0) +

k−1∑
m=0

Ak−m−1Bu (m)

y (k) = CAkx (0) +

k−1∑
m=0

CAk−m−1Bu (m) +Du (k)
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Discretization of Continuous Time Systems

Forward Difference

ẋ (t) ≈ x (t+ T )− x (t)

T

This converts ẋ = Ax+Bu into
x (t+ T ) = x (t) + TAx (t) + TBu (t)

= (I +AT )x (t) + TBu (t)
Evaluating at t = kT
x((k + 1)T ) = (I + TA)x(kT ) + TBu(kT )
y(kT ) = Cx(kT ) +Du(kT )

Ding Zhao (CMU) M1-2: Solving Linear Dynamics 78 / 86



Zero Order Hold

The control output is kept as a constant within the sampling duration.

u (t) = u (kT ) = u (k) for kT ≤ t < (k + 1)T

x(k) = eAkTx (0) +
∫ kT
0 eA(kT−τ)Bu (τ) dτ

⇒ x(k + 1) = eA(k+1)Tx (0) +

∫ kT+T

0
eA((k+1)T−τ)Bu (τ) dτ

= eAT
(
eAkTx (0) +

∫ kT

0
eA(kT−τ)Bu (τ) dτ

)
+

∫ (k+1)T

kT
eA((k+1)T−τ)Bu (τ) dτ

Because u(k) is a constant between kT and (k + 1)T , let α = (k + 1)T − τ ,dτ = −dα
⇒ x(k + 1) = eATx(k) + [

∫ T
0 eAαdα]Bu(k) = eATx(k) + [

∫ T
0 eAτdτ ]Bu(k)
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Zero Order Hold

∫ T

0
eAτdτ =

∫ T

0
I +Aτ +

A2

2!
τ2 + . . . dτ

= Iτ +
A

2
τ2 +A2 τ3

3 · 2!
+ . . . |T0

= TI +
T 2

2
A+

T 3

3!
A2 + . . .

= A−1
[
TA+

T 2

2!
A+

T 3

3!
A+ . . .

]
= A−1(eAT − I)
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Zero Order Hold

x(k + 1) = Adx(k) +Bdu(k)

y(k) = Cdx(k) +Ddu(k)

Ad = eAT , Bd =

∫ T

0
eAτdτB = A−1

(
eAT − I

)
B = A−1 (Ad − I)B

Cd = C,Dd = D

Python can directly handle this: Take the example of longitudinal driving: COLAB LINK
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Examples

ẋ =

[
1 2
0 3

]
x+

[
0
1

]
u, y = [2 1]x+ 3u

a) Discretize with T = 0.1 s

Ad = eAT , A = MÂM−1

M =

[
1 1
0 1

]
, Â =

[
1 0
0 3

]
, E2,1(−1)M = I ⇒M−1 =

[
1 −1
0 1

]
⇒ Ad =

[
1 1
0 1

] [
e0.1 0
0 e0.3

] [
1 −1
0 1

]
=

[
1.11 0.24

0 1 · 35

]
A−1 =

[
a b
c d

]−1
=

1

detA

[
d −b
−c a

]
=

1

ad− bc

[
d −b
−c a

]
=

1

3

[
3 −2
0 1

]
, Bd =

A−1 (Ad − I)B = 1
3

[
3 −2
0 1

]([
1.11 0.24

0 1 · 35

]
− I
)[

0
1

]
=

[
0.01
0.12

]
, Cd = [2 1], Dd = 3
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Examples

x (k + 1) =

[
1.11 0.24

0 1.35

]
x (k) +

[
0.01
0.12

]
u (k)

y (k) = [2 1]x (k) + 3u (k)
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Examples

b) solve x(k) for x(0) = [0 0]T , u(k) = 3

x (k) = Akdx (0) +

k−1∑
m=0

Ak−m−1d Bdu(m),

Ad = MÂM−1,M =

[
1 1
0 1

]
, Â =

[
1.11 0

0 1.35

]
,M−1 =

[
1 −1
0 1

]
⇒ Akd =

[
1 1
0 1

] [
1.11k 0

0 1.35k

] [
1 −1
0 1

]
=

[
1.11k 1 · 35k − 1.11k

0 1.35k

]
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Examples

⇒ x(k) =

[
1.11k 1.35k − 1.11k

0 1.35k

] [
0
0

]
+

k−1∑
m=0

[
1.11k−m−1 1.35k−m−1 − 1.11k−m−1

0 1.35k−m−1

] [
0.01
0.12

]
3︸ ︷︷ ︸

3
∑k−1

m=0

0.12× 1.35k−m−1 − 0.11× 1.11k−m−1

0.12× 1.35k−m−1



⇒ y(k) =[6 3]

k−1∑
m=0

[
0.12× 1.35k−m−1 − 0.11× 1.11k−m−1

0.12× 1.35k−m−1

]
+ 9

Ding Zhao (CMU) M1-2: Solving Linear Dynamics 85 / 86



Recap: Solutions to Linear Time Invariant State Equations

ẋ = Ax+Bu
y = Cx+Du
CT-LTI

⇒


x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ

y(t) = CeA(t−t0)x(t0) + C

∫ t

t0

eA(t−τ)Bu(τ)dτ +Du(t)

Dicretization: ⇓ Ad = eAT , Bd =
∫ T
0 eAτdτB = A−1 (Ad − I)B

x(k + 1) = Adx(k) +Bdu(k)
y(k) = Cx(k) +Du(k)
DT-LTI

⇒


x (k) = Akdx (0) +

k−1∑
m=0

Ak−m−1d Bdu (m)

y (k) = CAkdx (0) +

k−1∑
m=0

CAk−m−1d Bdu (m) +Du (k)
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