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Course Administration

Slides/assignments: Canvas

Lectures/recitations/office hours will be on Zoom.Tips to join Zoom meetings.

Submission: Gradescope (access on Canvas)

Textbook: there is no textbook. All information needed is on the slides

Forum: Campuswire (https://campuswire.com/)
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Linear Control SYSTEMS

We will take an abstract view of a system as a mapping from
inputs u ∈ Rm to output y ∈ Rn

Both u and y are vectors

Both u and y are functions of time

Write H as a mapping H : Rm → Rn where Ri is a set of
i-dimensional signals

u y
H

Continuous Time System:
H is CT if both u and y are continuous time signals.
→ Described by ODEs ẏ(t) = f(y,u(t))

Discrete Time System:
H is DT if both u and y are discrete time signals.
→ Described by difference equations y[(k + 1)T ] = f(u(kT ))⇒ y(k + 1) = f(y(k),u(k))
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Linear Control SYSTEMS -Types

Types of systems
[Brogan, Modern Control Theory,

1990]
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Linear CONTROL Systems - A Brief History

Control:continuously operating dynamical systems

modern control theory in
engr,bio,med,econ,social etc.

Machine learning controls
nolinear model-free

genetic algorithm, neural network
reinforcement learning control

State space methods
linear model-based (MIMO)

optimal/stochastic/
adaptive control Rudolf Kalman (Apollo)

Root-locus method
due to Evans

was fully developed

Frequency response methods
made it possible to

design linear closed-loop Norbert Wiener (Cybernetics)

Nyquist/Bode (Bell Lab) developed
methods for analyzing

the stability of
controlled systems

Minorsky worked on
automatic controllers (PID)

for steering ships

Present1980s1960s1950s1940s1930s1920s
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Linear CONTROL Systems - Cybernetics
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Knowledge in this will be Useful in the Following Courses

24-740 Combustion and Air Pollution Control

24-662 Robotic Systems and Internet of Things

24-671 Electromechanical Systems Design

24-673 Soft Robots

24-757 Vibrations

24-773 Multivariable Linear Control

24-774 Advanced Control Systems Integration

24-775 Robot Design & Experimentation

24-776 Nonlinear Controls

24-778 Mechatronic Design

24-785 Engineering Optimization

24-xxx Trustworthy AI Autonomy (Spring 2021)

16-642 Manipulation, Estimation, and
Control

16-711 Kinematics, Dynamic Systems
and Control

16-722 Sensing and Sensors

16-741 Mechanics of Manipulation

16-745 Dynamic Optimization

16-748 Underactuated Robots

16-861 Mobile Robot Design

16-865 Advanced Mobile Robot Design

16-868 Biomechanics and Motor Control

Ding Zhao (CMU) M1-1: Linear Dynamic Modeling 9 / 58



Table of Contents

1 What does this course teach?

2 Syllabus & assessment

3 Mathematical expression of linear systems

4 State space representation

5 Linearization

Ding Zhao (CMU) M1-1: Linear Dynamic Modeling 10 / 58



Syllabus of This Course - Canvas

Dynamic Modeling and Analysis

Module 1-1: Linear Dynamics Modeling

Module 1-2: Solving Linear Dynamics

Module 1-3: Controllability and Observability

Module 1-4: Realization
(State Space vs Transfer Fun.)

Module 1-5: Stability

Each topic has a homework

Design Methods for Control

Module 2-1: Feedback Control (Pole Placement)

Module 2-2: Introduction to Optimal Control
(LQR, MPC)

Module 2-3: Introduction to Stochastic Control
(Kalman Filter)

Module 2-4: Introduction to Adaptive Control
(MRAC)

Module 2-5: Introduction to Control-Based
Methods in Learning (if time permits)

Sub-module 1-4 have 5 projects

⇒ Midterm
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Assessment

Homework: 20%

Midterm : 25%

Projects: 50%

Participation: 5%
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Projects
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Specific Goals of This Course

I will help you to be

Confident in the interview for positions of control engineers

Familiar with the most important control nomenclature, theories, algorithms

Capable to implement real-world control algorithms independently

I have talked to my students and summarized the following jargons that have been often
mentioned in their interviews. By the end of the class, you will be able to explain them.

Core math: QR, LU, SVD, Cholesky, Jordan, diagonal decomposition, Riccati Equation,
Cayley Hamilton Theorem, and why they are useful in control?!!

Control: Lyapunov stability, controllability, observability, LQR, LQG, MPC, separation
principle, realization, Kalman Decomposition, Kalman Filter, EKF, UKF

Programming: Python related questions (need extra practice)

The most common question being asked is: explain LQR - is it always stable? why?
I will spend a lecture to derive it with you.
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WARNINGS

This is a math course. NOT a project-based course.
Modern controller design is based on a solid mathematical foundation.
Different from e.g. deep learning.

Pure empirical hand-tuning is difficult and risky. -”don’t tell me, prove it to me”.
Safety critical applications include space aircraft, automobile, economy, electric grids,etc.

I will try to balance between the math rigorousness and application broadness in teaching
and assignment. But I also need your devotion to spend enough time and efforts learning
the math.

Drop the course if you have already selected 2+ ”hardcore” courses, or 2 courses
plus heavy research duty (research masters). The workload of this course may
make you feel uncomfortable.

Remain in this course, only if you want to build an expertise on control/automation. This
is graduate school, five courses per semester even with a high GPA may not bring you
good job offers. Focus on building your expertise. Companies hire you to work on specific
tasks not to cover a broad area!
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Prerequisites

If the following contents sound unfamiliar to you, you may consider take this course next year.
These topics are ones that I assume you know, I may barely review them:

Calculus (e.g. derivative/integral)
21-120 Calculus I, 21-122 Calculus II

Linear algebra (e.g. matrix inversion, eigenvectors/eigenvalues)
24-282 Special Topics: Linear Algebra and Vector Calculus for Engineers
Gilbert Strang, “Introduction to Linear Algebra (5th Edition),” 2016

Classical control (e.g. Laplace transformation, transfer function, poles/zeros)
24-451 Feedback Control Systems
Katsuhiko Ogata, “Modern control engineering (5th Edition)”, Pearson, 2009

Basic statistics (e.g. mean, variance, Gaussian distribution)
Robert S. Witte, John S. Witte, “Statistics (10th Edition),” Wiley, 2009

These topics are ones that I assume you have learned. I will review but will not teach
them:

Stability (positive poles) for classical control theories

PID controllers
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Influence of Covid 19

We will work together to rise to this challenge.

I will try my best to accommodate you to your difficulties.

Raise hands or type in questions in the chat to encourage communication.

Use breakout rooms during the lecture and Campuswire to find study mates.

Arrange meetings with me and TAs.
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LINEAR Control Systems

Linearity: H is linear if it is both additive and homogeneous

Additivity:
H (u1 + u2) = H (u1) +H (u2) ,∀u1, u2 ∈ Sm

Homogeneity:
H(αu) = αH(u),∀u,∀ scalar α

These can be combined into

H (αu1 + βu2) = αH (u1) + βH (u2)
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Time Invariant Systems

A time-invariant system has a time-dependent system function that is not a direct
function of time.

Mathematically speaking, a ”time-invariance” system has the following property:
Given a system with a time-dependent output function y(t) and a time-dependent input
function x(t) the system will be considered time-invariant if a time-delay on the input
x(t+ τ) directly equates to a time-delay of the output y(t+ τ) function.
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Example

For the following, determine if the system is 1) linear 2) time-invariant

a) ÿ = u− ky2, for k ∈ R
Let 2 I/O pairs be given by y1 = H(u1), y2 = H(u2)

ÿ1 = u1 − ky2
1

ÿ2 = u2 − ky2
2

Add together
ÿ1 + ÿ2 = u1 + u2 − k

(
y2

1 + y2
2

)
If additive,

(
¨y1 + y2

)
= u1 + u2 − k (y1 + y2)2 ⇒ Not linear

For time invariance, substitute t = t− τ

ÿ(t− τ) = u(t− τ)− ky(t− τ)2

Dynamics are unchanged by delay ⇒ time-invariant
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Example (OTB)

b) ÿ = 5t2ẏ + 3y + u
Let y1 = H(u1), y2 = H(u2)

ÿ1 = 5t2ẏ1 + 3y1 + u1

ÿ2 = 5t2ẏ2 + 3y2 + u2(
¨y1 + y2

)
= 5t2

(
˙y1 + y2

)
+ 3

(
˙y1 + y2

)
+ (u1 + u2)→ Additive

(α̈y) = 5t2 (α̇y) + 3 (αy) + αu→ Homogeneous

⇒ Linear

Let t = t− τ

ÿ(t− τ) = 5(t− τ)2ẏ(t− τ) + 3y(t− τ) + u(t− τ) 6= 5t2ẏ(t− τ) + 3y(t− τ) + u(t− τ)

⇒ Time varying

Tricks to check time-invariant systems: in Dτ (y(t)) = y(t− τ), we will replace all the t with
t− τ , while in Dτ (u(t)) = u(t− τ), we only add −τ in the parentheses of u(t), i.e. we will
not change t outside of u(t). Then check whether Dτ (y(t)) = the output of Dτ (u(t))
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State Space Equation

Can we establish theories that can work on all linear control systems in
automotive/aerospace engineering, chemistry reaction, petroleum industry, economy?

First we need to have a universal way to describe these systems. Fortunately, we do.

ẋ = Ax + Bu
y = Cx + Du

Rudolf Kálmán, 1930-2016
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A Brief Introduction to Me

Ding Zhao

H. Lam (2011)H. Peng (1992)

J. K. Hedrick (1971)

R. E. Kalman (1957)A. E. Bryson (1951), optimal control, backpropagation

H. W. Liepmann (1938), fluid mechanics

T. von Karman (1908), founded JPL

L. Prandtl (1900)
”Father of modern aerodynamics”

M. Tomizuka (1974)

X. Qian (1939)
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A Brief Introduction to Me

Ding Zhao

P. Glynn (1982) → J. Blanchet (2004) → H. Lam (2011) →

S. Bochner (1921) → H. Scarf (1954) → D. Iglehart (1961) →

E. Schmidt (1905) → D. Hilbert (1885) → F. Lindemann (1873)

F. C. Klein (1868)

J. Plucker (1823)R. Lipschitz (1853)

G. L. Dirichlet (1827)

C. F. Gauss (1798)S. D. Poisson (1800)

J. L. Lagrange (1755)

L. Euler (1726)

J. Fourier (1790)

P. S. Laplace (1769)

H. Peng
(1992)
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Notation

An m x n matrix: m rows and n columns

m = 1 : Row matrix

n = 1 : Column matrix

m = n : Square matrix

m = n = 1 : Scalar
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Matrix Transpose

Consider m x n matrix A = [aij ]; i = 1, 2, . . . ,m and j = 1, 2, . . . , n
Transpose of A is an n x m matrix AT = [aji] .

Example:

 0 4
7 0
3 1

T =

[
0 7 3
4 0 1

]

if A = AT : A is said to be symmetric

if A = −AT : A is said to be skew-symmetric
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Conjugate and Associate Matrix

Conjugate matrix
The conjugate of A, written A, is the matrix formed by replacing every element in A by its
complex conjugate. Thus A = [aij ] .

If all elements of A are real, then A = A

If all elements are purely imaginary, then A = −A

Associate matrix
The associate matrix of A is the conjugate transpose of A. The order of these two operations
is immaterial.

A = A
T ⇒ A: Hermitian

A = −AT ⇒ A: Skew-Hermitian

For real matrices, symmetric and Hermitian mean the same.
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Matrix Addition and Subtraction

Matrix addition and subtraction are performed on an element-by-element basis. That is, if
A = [aij ] and B = [bij ] are both m× n matrices, then A + B = C and A−B = D indicate
that the matrices C = [cij ] and D = [dij ] are also m× n matrices whose elements are given
by cij = aij + bij and dij = aij − bij for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Example:

 0 4
7 0
3 1

+

 1 2
2 3
0 4

 =

 1 6
9 3
3 5


Properties:

A + B = B + A Commutative

(A + B) + C = A + (B + C) Associative

(A + B)T = AT + BT
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Scalar Multiplication

Multiplication of a matrix A = [aij ] by an arbitrary scalar α ∈ F amounts to multiplying
every element in A by α. That is, αA = Aα = [αaij ] .

Example: (−2)

 1 6
9 3
6 0

 =

 −2 −12
−18 −6
−12 0


Properties:

(α+ β)A = αA + βA

(αβ)A = (α)(βA)

α(A + B) = αA + αB

Ding Zhao (CMU) M1-1: Linear Dynamic Modeling 31 / 58



Matrix Multiplication

Consider an m× n matrix A = [aij ] and a p× q matrix B = [bij ]. This product is only defined
when A has the same number of columns as B has rows i.e., when n = p. The elements of
C = [cij ] are then computed according to cij =

∑n
k=1 aikbkj

Example:[
2 3
4 5

] [
1 3 5
2 4 8

]
=

[
2(1) + 3(2) 2(3) + 3(4) 2(5) + 3(8)
4(1) + 5(2) 4(3) + 5(4) 4(5) + 5(8)

]
=

[
8 18 34
14 32 60

]
Properties:

(AB)C = A(BC) = ABC

α(AB) = (αA)B = A(αB), where α is a scalar

A(B + C) = AB + AC, (A + B)C = AC + BC

(AB)T = BTAT

AB 6= BA Not commutative, this makes vectors/matrices different than scalars

Ding Zhao (CMU) M1-1: Linear Dynamic Modeling 32 / 58



Field

Let F be a set with at least 2 elements, assume F has 2 operations:
“+”: F ×F → F (addition) and “·” : F ×F → F (multiplication). F is called a field iff:

A0 : ∀α, β ∈ F ,∃α+ β ∈ F ⇒ Closure under Addition

A1 : ∀α, β ∈ F , α+ β = β + α⇒ Commutativity

A2 : ∀α, β, γ ∈ F , (α+ β) + γ = α+ (β + γ)⇒ Associativity

A3 : ∃0 ∈ F ,∀α ∈ F , α+ 0 = α⇒ Neutral

A4 : ∀α ∈ F , ∃(−α) ∈ F , α+ (−α) = 0⇒ Inverse

M0 : ∀α, β ∈ F , ∃α·β ∈ F ⇒ Closure under Multiplication

M1 : ∀α, β ∈ F , α·β = β·α⇒ Commutativity

M2 : ∀α, β ∈ F , (α·β)· γ = α· (β· γ)⇒ Associativity

M3 : ∃1 ∈ F , ∀α ∈ F , α· 1 = α⇒ Neutral

M4 : ∀α 6= 0,∃α−1, α·α−1 = 1⇒ Inverse

D : α, β, γ ∈ F , α· (β + γ) = α·β + α· γ ⇒ Distributivity
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Vector Space

Vector spaces → Linear spaces Let F be a field, let V be a set that has an “addition”
operation “+”: V × V → V . V is called a vector space over F iff:

A0 : ∀x,y ∈ V ,∃x + y ∈ V Closure under Addition

A1 : ∀x,y ∈ V ,x + y = y + x Commutativity

A2 : ∀x,y, z ∈ V , (x + y) + z = x + (y + z) Associativity

A3 : ∅ ∈ V ,∀x ∈ V ,x + ∅ = x Neutral

A4 : ∀x ∈ V , ∃(−x) ∈ V ,x + (−x) = ∅ Inverse

SM0 : ∀α ∈ F , ∀x ∈ V , ∃α·x ∈ V Closure under Scalar Multiplication

SM1 : ∀α, β ∈ F ,∃x ∈ V , (α·β)x = α(β·x) Scalar Associativity

SM2 : ∀α ∈ F , ∀x,y,∈ V , α(x + y) = αx + αy Scalar-Vector Distributivity

SM3 : ∀α, β ∈ F ,∀x ∈ V , (α+ β)x = αx + βx Vector-Scalar Distributivity

SM4 : ∀x ∈ V , 1·x = x Neutral

Usually denoted as (X ,F ) or (V ,F )
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Dot Product

Consider two vectors a = [a1, a2, ..., an] and b = [b1, b2, ..., bn], the dot product of two vectors
is defined as: a · b = aTb =

∑n
i=1 aibi = a1b1 + a2b2 + · · ·+ anbn

Example: [1, 2,−5] [4,−3,−1]T = (1× 4) + (2×−3) + (−5×−1) = 4− 6 + 5 = 3

Inner product generalizes the dot product (which in in Euclidean spaces) to vector space of
any dimensions. An inner product space is a vector space V over the field F , and can be
represented with a map

〈·, ·〉 : V × V → F

that satisfies three properties: conjugate symmetry 〈x,y〉 = 〈y,x〉, linearity in the first
argument 〈ax,y〉 = a〈x,y〉 and positive-definite (〈x,x〉 ≥ 0).
Usually denoted as (X ,F , 〈·, ·〉)
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Angle between Vectors and Orthogonal

Inspired from the geometric space, the angle between two vectors is defined as:

∠ (x,y) = arccos
xT y√

xTx
√

yTy

For x,y ∈ V , we say that x and y are orthogonal if ∠ (x,y) = 90◦

xTy = cos(90◦) = 0

A set of vectors x = {x1, . . . ,xn} is called orthonormal if{
xTi xj = 0, ∀i 6=j
xTi xi = 1, 1 6 i 6 n
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p-norm

x = [x1, . . . , xn]T

||x||2 =
(∑n

i=1 |xi|
2
) 1

2
=
√
xTx Euclidean norm - Distance

||x||p = (
∑n

i=1 |xi|
p)

1
p

||x||1 =
∑n

i=1 |xi|
||x||∞ = max |xi|

You may interpret norm as the generalized linear space version of absolute value. It is an
important concept because it is usually used as a measure of magnitude, which we will use
extensively to describe the behaviors of a system, e.g. stability.
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Theory of Everything

Max Tegmark, ”Is ’the theory of
everything’ merely the ultimate
ensemble theory?”, Annals of
Physics, 1998
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Null Matrix and Unit Matrix

Null Matrix
The null matrix 0 is one that has all its elements equal to zero. The null matrix is however,
not unique because the numbers of rows and columns it possesses can be any finite positive
integers. Whenever necessary, a null matrix of size m× n is denoted by 0mn.

A + 0 = 0 + A = A

0A = A0 = 0

Note: AB = 0 does not imply that either A or B is a null matrix.

Identity Matrix
The identity or unit matrix I is a square matrix with elements on its diagonal (i = jpositions)
as ones and with all other elements as zeros. When necessary, an n× n unit matrix shall be
denoted by In.

if A is m× n, then ImA = A and AIn = A
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States

The concept of state occupies a central position in modern control theory. But what is state?

State is a complete summary of the status of the system at a particular point in time

The state at any time t0 is a set of the minimum number of parameters xi(t0) which
allows a unique output segment Y[t0,t] to be associated with each input segment u[t0,t] for
every t0 ∈ T and for all t > t0, t ∈ T .
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What is the State

State is a minimum complete summary of the status of the system
at a particular point in time.

Example: the State of Driving

F = ma = mp̈ = t2

ṗ = v

p(t)

m
p(0) = v(0) = 0

Which is the state?:
{p, ṗ, p̈}, {ṗ, p̈}, {p, ṗ}, {p}, solve p(t)

x1 = p , x2 = ṗ, x = [x1, x2]T

ẋ =

[
0 1
0 0

]
x +

[
0
1/m

]
F

y =
[

1 0
]
x
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Our First Program

COLAB LINK

import numpy as np

from scipy.signal import StateSpace, lsim

import matplotlib.pyplot as plt

m = 1 # kg

A = np.asarray([[0., 1.],

[0., 0.]])

B = np.asarray([[0.],

[1. / m]])

C = np.asarray([[1., 0.]])

D = np.asarray([[0.]])

# define the continouse time linear system

cart_sys = StateSpace(A, B, C, D)
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In Python Code (cont’d)

# define simulation steps in time

t = np.arange(0, 10, 1e-3)

# define control input

F = t**2

# simulate the system

_, y, x = lsim(cart_sys, F, t, X0=[0., 0.])

# plot

plt.figure(dpi=100)

plt.plot(t, y)

plt.ylabel('p [m]')

plt.xlabel('t [s]')

plt.show()
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State Space Example

Find a state space model for ÿ = 7t2ẏ + 2y + u
Which is the state?: {y, ẏ, ÿ}, {ẏ, ÿ}, {y, ẏ}, {y}

Choose x1 = y, x2 = ẏ.
2nd order ODE to 1st order ODE
ẋ1 = ẏ = x2

ẋ2 = ÿ = 7t2ẏ + 2y + u = 7t2x2 + 2x1 + u
Now stack into a vector equation[
ẋ1

ẋ2

]
=

[
x2

2x1 + 7t2x2 + u

]
=

[
0 1
2 7t2

] [
x1

x2

]
+

[
0
1

]
u

For the output, want y, i.e

y = x1 =
[

1 0
] [ x1

x2

]
+ 0 · u
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The Choice of State is NOT Unique!

Choose x1 = 2y + 3ẏ, x2 = ẏ,⇒ y = (x1 − 3x2)/2
Then,
ẋ1 = 2x2 + 3

(
5t2x2 + 3x1 + u

)
ẋ2 = ÿ = 5t2ẏ + 3y + u = 5t2x2 + 3(x1 − 3x2)/2 + u
And,
y = 1

2x1 − 3
2x2

Hence, ẋ =

[
9 2 + 15t2

3/2 5t2 − 9/2

]
x +

[
3
1

]
u

y = [ 1
2 −3

2 ]x
- These both model the same system!
- Different choices of state variables will have difference advantages.
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Differential Equations to State Space - SISO System

dnya

dtn + an−1
dn−1y
dtn−1 + . . .+ a1

dy
dt + a0y = b0u

Define state variables: x1 = y, x2 = dy
dt , xn = dyn−1

dtn−1

Then, ẋ1 = x2, ẋ2 = x3, · · · , ẋn−1 = xn
ẋn = b0u− an−1xn−1 − an−2xn−2 − · · · − a0x1

Write in matrix form

A =


0 1 0 . . . 0
0 0 1 . . . 0
...
0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1

 B =

 0
...
b0


C =

[
1 0 0 . . . 0

]
D = 0
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Example: Automotive Suspension (Group Discussion)

u1

u2
s2

s1

k1

k2

m1

m2 m2

m1

k1(s1 − s2)

k2(s2 − u1)

k1(s1 − s2)u2

Write the equations of motion in steady state
m1s̈1 = −k1 (s1 − s2)
m2s̈2 = k1 (s1 − s2)− k2 (s2 − u1) + u2

Let x1 = s1, x2 = ṡ1 x3 = s2, x4 = ṡ2 ⇒
ẋ = Ax + Bu,y = Cx + Du

C =

[
1 0 0 0
0 0 1 0

]
D = 0 B =


0 0
0 0
0 0
k2
m2

1
m2



A =


0 1 0 0

− k1
m1

0 k1
m1

0

0 0 0 1
k1
m2

0 − k1
m2
− k2

m2
0


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Examples

Let’s take a look at the last example and use the difference between positions as a state
x′1 = s1, x′2 = ṡ1, x′3 = s1 − s2, x′4 = ṡ1 − ṡ2, x′ = [x′1, x

′
2, x
′
3, x
′
4]T

Let x = Mx′, ẋ = Mẋ′ ⇒M =


1 0 0 0
0 1 0 0
1 0 −1 0
0 1 0 −1

 = M−1

Given ẋ = Ax + Bu⇒Mẋ′ = AMx′ + Bu
⇒ ẋ′ = M−1AMx′ + M−1Bu,y = CMx′ + Du
Let Â = M−1AM (similarity transformation), B̂ = M−1B, and Ĉ = CM

⇒ Â =


0 1 0 0
0 0 −k1/m1 0
0 0 0 1

k2/m2 0 (−2k1 − k2)/m2 0

 B̂ =


0 0
0 0
0 0

−k2/m2 −1/m2


Ĉ =

[
1 0 0 0
0 0 1 0

]
Again, we can see the choice of state variables is not unique
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Summary of State Space Representation

State space form writes high order and coupled DEQs as 1st order equations

Many (infinite) different state equations represent the same DEQ

State equations can be transformed

Motivation of using Linear Space Representations

Can naturally deal with MIMO systems (Compare with “transfer function matrices”. We
will see later.)

Provide a convenient, compact notation, and uniform representations.

Allow the application of the powerful vector-matrix theory (you will see later in this class)

An ideal format for computer programming. (Vectorization)
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Why Linearization

Almost all real systems are nonlinear.
“Using a term like nonlinear science is like referring to the bulk of zoology as the study of
non-elephant animals.” – Stanislaw Ulam

In general, nonlinear dynamical systems are difficult to analyze. It is often advantageous
to look for approximations to the complicated nonlinear systems.

Under specific conditions, we can replace the nonlinear system with an approximate linear
system. For example, we want to study whether small perturbations away from an
equilibrium point of the nonlinear system grow or decay with time.

Ulam 1909-1984
Neumann 1903-1957
Metropolis 1915-1999
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Equilibrium Point

Consider the nonlinear time invariant system:

ẋ = f(x,u), f : Rn × Rm → R

x̄ ∈ Rn is an equilibrium point if

∃ū ∈ Rm, s.t.f(x̄, ū) = 0

i.e. ẋ(t) = 0 at equilibrium points.
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Linearization

Define the deviation variables:
δx = x− x̄, δu = u− ū⇒ x = δx + x̄,u = δu + ū, ẋ = δ̇x
Taylor Series

ẋ = f(x̄ + δx, ū + δu) ≈ f(x̄, ū) +
∂f

∂x
|x=x̄,u=ūδx +

∂f

∂u
|x=x̄,u=ūδu

δ̇x =
∂f

∂x
|x=x̄,u=ūδx +

∂f

∂u
|x=x̄,u=ūδu

A =
∂f

∂x
|x=x̄,u=ū ∈ Rn×n,B =

∂f

∂u
|x=x̄,u=ū ∈ Rn×m,

∂f

∂x
is called “Jacobian”

Jacobi, 1804-1851
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Example

ẋ =

[
x1 − x3

1 + x1x2

−x2 + 2x1x2

]
1. Find equilibria{
x1 − x3

1 + x1x2 = 0

−x2 + 2x1x2 = 0
⇒ x2(2x1 − 1) = 0⇒ x2 = 0 or x1 = 1

2

x2 = 0⇒ x1(1− x2
1) = 0⇒ x1 = 0, x1 = 1, x1 = −1⇒ (0, 0), (1, 0), (−1, 0)

x1 = 1
2 ⇒

1
2 −

1
23

+ 1
2x2 = 0⇒ x2 = (−1 + 1

22
)⇒ (1

2 ,−
3
4)
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Phase Portrait Plot of the Nonlinear System

COLAB LINK
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Example

2. Linearization

ẋ =

[
x1 − x3

1 + x1x2

−x2 + 2x1x2

]
,x =

[
0
0

]
,

[
1
0

]
,

[
−1
0

]
,

[
1
2
−3

4

]

∂f

∂x
=

[
1− 3x2

1 + x2 x1

2x2 2x1 − 1

]

(0, 0): δ̇x =

[
1 0
0 −1

]
δx

(1, 0): δ̇x =

[
−2 1
0 1

]
δx

(−1, 0): δ̇x =

[
−2 −1
0 −3

]
δx

(1
2 ,−

3
4): δ̇x =

[
−1

2
1
2

−3
2 0

]
δx
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Recap: State Space Equations

general (nonlinear) linear

time-varying
ẋ = f(x,u, t)

y = g(x,u, t)

ẋ = A(t)x + B(t)u

y = C(t)x + D(t)u

time-invariant
ẋ = f(x,u)

y = g(x,u)

ẋ = Ax + Bu

y = Cx + Du

where u ∈ Rm is input, x ∈ Rn is the states, and y ∈ Rp is the output. In this course, we will
focus on the linear SS problems.
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Recap: Linearization

Consider the nonlinear system:

ẋ = f(x,u), f : Rn × Rm → R

x̄ ∈ Rn is an equilibrium point:

∃ū ∈ Rm, s.t.f(x̄, ū) = 0

Define the deviation variables:

δx = x− x̄, δu = u− ū⇒ x = δx + x̄,u = δu + ū

A =
∂f

∂x
|x=x̄,u=ū ∈ Rn×n,B =

∂f

∂u
|x=x̄,u=ū ∈ Rn×m,

∂f

∂x
is called “Jacobian”
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